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Aperiodic and Semi-Periodic Perfect Maps 
Chris J. Mitchell 

Abstract- Paterson [l] has recently shown that the trivial 
necessary conditions are sufficient for the existence of a (binary) 
perfect map. These periodic structures can be transformed very 
simply into corresponding aperiodic and semi-periodic perfect 
maps. However, aperiodic and semi-periodic perfect maps can 
exist for parameter sets for which the corresponding periodic 
perfect maps cannot. In this paper it is shown, by construction, 
that (binary) aperiodic and semi-periodic perfect maps exist for 
all possible parameter sets. 

Index Terms-de Bruijn array, window array, de Bruijn se- 
quence. 

I. INTRODUCTION 

P ERFECT MAPS, namely, two-dimensional arrays in 
which every possible rectangular sub-array (of fixed size) 

occurs precisely once, have been studied for some 30 years 
(see, for example, Reed and Stewart’s 1962 paper [2]). A 
number of construction methods have been devised [3]-[5] and 
the existence question has recently been completely answered 
111. 

A number of possible applications exist for such arrays, 
perhaps the most obvious of which is their use for two- 
dimensional position location. The basic idea is that, if such 
a map is written in some way onto a planar surface, then any 
device capable of examining an appropriately sized rectangular 
subarray will be able to precisely determine its position on 
the surface. Brief mention is made of such an application 
by Reed and Stewart, [2], and a more detailed description 
of applications of this type can be found in Bums and 
Mitchell [6]. Before proceeding also note that, in the one- 
dimensional case, similar position-detection applications have 
been suggested for de Bruijn and m-sequences by a number 
of authors (see, for example, Bondy and Murty [7], Petriu et 
al. [8]-[13], and Arazi [ 141). 

It is worth pointing out that the position-detection appli- 
cation does not require the “extreme” property of Perfect 
Maps; namely, that each subarray occurs exactly once. The 
key requirement is that each subarray occurs at most once. 
This logic has led some authors to apply the term Perfect Map 
in a rather looser way to a much larger class of arrays (see, for 
example, Reed and Stewart [2]). Of particular importance in 
this context are the pseudorandom arrays (see, for example, 
Nomura et al. [ 151, MacWilliams and Sloane [ 161, and Etzion 
[3]) which have the property that each subarray, apart from 
the all-zero subarray, occurs exactly once. Other arrays with 
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the property that each subarray occurs at most once have been 
constructed by DCnes and Keedwell [17] and Etzion [3]. 

Historically, the study of Perfect Maps has almost exclu- 
sively been concerned with the periodic case, i.e., where the 
array is considered to be wrapped round on itself-in the one- 
dimensional case this corresponds to writing the sequence on 
the outside of a cylinder, and in the two-dimensional case to 
writing the array onto a torus. Subarrays then exist starting 
at any point in the array, which no longer has any “edges.” 
It is also occasionally worth considering the case where one 
dimension is regarded periodically and the other aperiodically, 
as would happen if a two-dimensional array were written onto 
the outside of a cylinder. 

However, for the practical position-location application 
briefly mentioned above, the aperiodic case is far more 
relevant. Here the array is deemed to be written onto a planar 
surface and the subarrays are always completely within the 
borders of the array. For these practical reasons, we are 
primarily concerned in this paper with this aperiodic case. 
However, we do consider semi-periodic arrays, where the 
array is considered periodically in one axis and aperiodically 
in the other. This corresponds to writing the array onto the 
outside of a cylinder. 

We first show that any periodic array can be used in a very 
simple way to construct slightly larger aperiodic and semi- 
periodic arrays. We then give some construction methods for 
c-ary semi-periodic and aperiodic perfect maps which, in the 
binary case (i.e., c = 2), completely answer the existence 
question for these arrays. 

II. FORMAL DEFINITIONS AND NOTATION 

In this paper we consider c-ary m by n integer arrays, which 
we write as 

A = (aij) (O<iim-l,O<j<n-1) 

where each entry aij satisfies 0 < aij 5 c - 1. 
If A is an m by n c-ary array, we define its u by u subarrays 

to be the c-ary arrays 

Ast = (@ a.7 ’ 0<i~u-1,0~j~u-1), 
Ois<m-l,O<t<n-1 

defined by 

where i + s is computed modulo m and j + t is computed 
modulo n. In the case of a sequence of length n, we analo- 
gously refer to the set of subsequences of length u, where this 
set will contain n members. 

0018-9448/95$04.00 0 1995 IEEE 



MITCHELL: APERIODIC AND SEMI-PERIODIC PERFECT MAPS 89 

Observe that in the aperiodic case we are only interested 
in those subarrays. Ast for which 0 5 s 5 m  - u  and 
0 < t 5 n - ‘u. We  call this subset of subarrays the aperiodic 
subarrays. 

A. Periodic Perfect Maps and  de  Bruijn Sequences 

Using the notation of Fan et al. [4], define a (m, n; u, v)- 
Periodic Perfect Map, or simply a (m, n; u, w)-PM to be a 
c-ary m  by n array (c 2 2, m  > u 2 1, n > 21 > 1) 
with the property that each possible u by u c-ary array occurs 
exactly once in the set of u  by ‘u subarrays {A,, : 0  2  s 5  
m- 1, 0 I t 5 n-l}. Note that (1, n; 1, w)-PMs are simply 
the well-known de Bruijn sequences. 

We  immediately have the following well-known result re- 
lating the parameters of a Periodic Perfect Map. 

Lemma 1: Zf A is a  c-ary (m, n; u, v)-PM then 

i) m>u or m=u=l 
ii) 

and 
n>v or n=21=1 

iii) mn = cuv. 

Proof: i) is immediate on observing that if m  = u then 
any m  x n array must contain the all-zero u x 2, subarray either 
not at all or at least u times. ii) is similar and iii) follows 
directly from the definition of perfect map. w 

It has recently been shown by Paterson [ 11, that in the binary 
case, the necessary conditions of Lemma 1 are in fact sufficient 
for the existence of Periodic Perfect Maps. 

We  next briefly review the one-dimensional analog of 
Periodic Perfect Maps. As we have already observed, a 
(1, n; 1, v)-PM is simply a span v de  Bruijn sequence.  For 
such sequences we have the following well-known result 
[18]-[20]. 

Theorem 2  (De Bruijn, Good,  Rees): A c-ary span v de 
Bruijn sequence (i.e., a  sequence of length n = c” with 
entries from (0, 1,. . . , c - l} in which every distinct c-ary 
w-tuple occurs exactly once) exists for every c and 21 (c 2 2 
and u 2 1). 

Many construction methods have been devised for de Bruijn 
sequences, see, for example, [21]. 

The one-dimensional analog of a pseudorandom array is 
what we call a  span v pseudorandom sequence,  and is a c-ary 
sequence of length n = c” - 1 with the property that every 
c-ary v-tuple occurs, with the exception of the all-zero w-tuple. 
The following result is well-known (see, for example, [6]). 

Lemma 3: There exists a (c - l)-to-one correspondence 
between the set of c-ary span u de Bruijn sequences and the 
set of c-ary span v pseudorandom sequences. 

Given a span v de Bruijn sequence, the corresponding 
pseudorandom sequence is derived be deleting one of the 
zeros from the unique v-tuple of zeros. Hence pseudorandom 
sequences exist for every choice of c and u. 

Given a finite sequence C = (ci), (0 5 i 5  n - l), and a 
nonnegative integer k, we define TI, (C) to be the cyclic shift 
of C by k places. If we write (d;) = Tk (C), then 

difk = ci (O<i<n-1) 
where i + k is calculated modulo n. 

We  also need to consider the existence of Perfect Factors, 
introduced by Etzion [3]. An (n, c, w)-Perfect Factor (c > 
2, n ( c”) consists of a  collection of P/n c-ary sequences 
(cycles) of length n, with the property that every c-ary w-tuple 
occurs in a unique sequence in the collection. Note that a 
(CV, c, v)-Perfect Factor is simply a c-ary, span ‘u de Bruijn 
sequence. Etzion ([3, Theorem 41) established the following 
key result: 

Theorem 4  (Etzion): If k and u are positive integers satis- 
fying 

u < 2” 5 2” 

then there exists a (a”, 2, v)-Perfect Factor, 

B. Aperiodic and  Semi-Periodic Perfect Maps 

Next define a (m, n; u, v)-Aperiodic Peqect Map, or sim- 
ply a (m, n; u, v)-APM to be a c-ary m  by n array (c > 
2, m  > u > 1, n > v 2 1) with the property that each 
possible u by u c-ary array occurs exactly once in the set of 
u  by ‘u aperiodic subarrays {Ast : 0  5  s 5  m - u, 0  5  t 5  
n - v}. We  immediately have the following result relating the 
parameters of an Aperiodic Perfect Map: 

Lemma 5: If A is a c-at-y (m, n; u, I,)-APM then 

i> 
ii) 

and 

m>u 

n>w 

iii) (m - u + l)(n - v  + 1) = cuu. 

Proof i) is immediate on observing that if m  < u then 
the array will have no aperiodic subarrays. ii) is similar and 
iii) follows directly from the definition of aperiodic perfect 
map. w 

Examples of aperiodic binary perfect maps can be found in 
[6]. More specifically, [6, figs. 2 and 31 contain a (3, 34, 2, 
3)-APM and a (4, 33, 3, 2)-APM, respectively. 

In the remainder of this paper we work with a class of 
arrays which we call Semi-Periodic Perfect Maps.  These two- 
dimensional arrays are regarded as periodic in one dimension 
and aperiodic in the other. More formally given a c-ary m  by 
n array A, with u by u subarrays Ast, we call those subarrays 
Ast having 0 5 s 5 m-u and 0  5  t 5  n-l the Semi-Periodic 
Subarrays of A. We can then define a (m, n; u; v)-Semi- 
Periodic Perfect Map, or simply a (m, n; u; v)-SPM to be 
a c-ary m  by n array (c > 2, m  2 u 2 1; n > w > 1) 
with the property that each possible u by w c-ary array occurs 
exactly once in the set of u  by v semi-periodic subarrays 
{Aat : 0  5 s < m  - u, 0  5 t 5 n - l}. As previously, we 
immediately have the following result relating the parameters 
of a Semi-Periodic Perfect Map: 

Lemma 6: If A is a c-ary (m, n; u, v)-SPM then 

9 
ii) 

and 

iii) 

m>u 

n>v or n=u=l 

(m - u  + 1)n = cue. 
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Before proceeding we make the following existence conjec- 
tures for Semi-Periodic and Aperiodic Perfect Maps. 

Conjecture 7: The necessary conditions of Lemma 5 
on m, n, u, v are sufficient for the existence of a c-ary 
(m, n; u, v)-APM. 

Conjecture 8: The necessary conditions of Lemma 6 
on m, n, u, v are sufficient for the existence of a c-ary 
(m, n,; u, v)-SPM. 

As has been observed in [6], Conjecture 7 trivially holds 
when m = 1, i.e., in the sequence case. In the remainder of 
this paper we show that the above two Conjectures hold in 
the case when. c = 2. 

III. CONSTRUCTING APM’s FROM PM’s 

We  next describe how any c-ary periodic perfect map (an 
(m, n; u, T/)-PM say) can be trivially transformed into a c- 
ary aperiodic perfect map of slightly larger dimensions (an 
(m + u - 1,’ n + v - 1; u, v)-APM)-this construction is also 
given in [6]. This construction merely involves adding copies 
of the first u  - 1  rows of a periodic array at the bottom of the 
array and adding copies of the first ‘u - 1  columns of the array 
after the last column (generating an (m + u - 1) x (n + TJ - 1) 
array from an m x n array). 

Dejinition 9: Suppose m, n, u, v are positive integers sat- 
isfying 1 5 u < m  and 1 _< II _< n. Suppose also that 
A = (aij) (0 L. i I ‘111  - 1, 0 5 j 5  n - 1) is an m by 
r~ array. Then let E,,(A) = (b;j) (0 5 i < m  + u - 2  and 
0 5 j 5  n  + v - 2) be the (m + u - 1) by (n + ‘u - 1) array 
defined by 

bij = u,t 

where s = i mod m and t = j mod n. 
Observe that El,l(A) = A. Note also that the above 

elementary construction was previously described by Kanetkar 
and Wagh [22]. We  can now state the following: 

Lemma 10: If A is a ( m  - u + 1, n  - v + 1; u, v)-PM 
(m > u, TL 2 v), then E,,(A) is an (m, n; u, v)-APM. 

Proof It should be clear that the set of u  by ‘u subarrays 
of A is identical to the set of u  by v aperiodic subarrays of 
E,,(A). The result follows immediately from the definitions. 

n 
We now have: 
Corollary II: Suppose m, 12; u, v are positive integers sat- 

isfying 

i> 
ii) 

and 

m > 2u or m = u = 1 
n>2v or n=v=l 

iii) (m - u  + l)(n - v + 1) = 2UV. 

Then there exists a binary (m, n; u, v)-APM. 
Proof First observe that Paterson [I] has shown that 

the necessary conditions of Lemma 1 are sufficient for the 
existence of Periodic Perfect Maps in the binary case (i.e., for 
c = 2). Hence there exists a binary (m-u+l, n-vfl; u, u)- 
PM. The result follows immediately from Lemma 10. n 

Observe that, in a similar way, we may obtain an (m + u - 
1, n; u, v)-SPM from an (m, r~; u, ?I)-PM and an (m, n + 
‘u - 1; u, v)-APM from an (m, n; u, v)-SPM. Indeed, the _ 
example of a (3, 34, 2, 3)-APM given in [6] has its first two 
columns equal to its last two columns, and hence has been 
derived from a (3, 32, 2, 3)-SPM. Similarly, the (4, 33, 3, 
2)-APM in [6] has its first column equal to its last and has 
therefore been derived from a (4, 32, 3, 2)-SPM. This leads 
to the following two results. 

Corollary 12: Suppose rr~, nL; u, v are positive integers sat- 
isfying 

i> m>2u or m=u=l 
ii) ’ n>v or n=‘u=l 

and 

iii) (m - 16 + 1)” = 2uU. 

Then there exists a binary (m, n; u: w)-SPM. 
Corollary 13: Suppose there exists a c-ary (m, n; IL, v)- 

SPM. Then there also exists a c-ary (m, nfv-1; u, v)-APM. 
We  can now state the following key lemma. 
Lemma 14: If Conjecture 8 holds for any c, then Conjecture 

7 also holds for that value of c. 
Pro05 Suppose c is fixed and suppose Conjecture 8 holds 

for that value of c. Suppose also that (m, n, u, v) satisfy the 
conditions of Lemma 5. 

First observe that if (m, n - ‘u + 1, u, u) satisfy the condi- 
tions of Lemma 6, then a c-ary (m, n; u, v)-APM exists by 
Corollary 13. But (m, n-vfl, u, v) do satisfy the conditions 
of Lemma 6 unless n - v + 1 < ?I, i.e., unless n 5 2v - 1. 

Next note that if (n, m-ufl, v, u) satisfy the conditions of 
Lemma 6, then a c-ary (n, m; 2r, u)-APM exists by Corollary 
13, and hence a c-ary (m, n; u, v)-APM exists; but (n, m - 
u + 1, w, u) do satisfy the conditions of Lemma 6 unless 
m  5 2u - 1. Hence we need only consider the case where 
n 5 2v-1 andm 5 2u-1. Since (m-u+l)(n-v+l) = cUVu, 
we have c”” < uv. But this can never hold given uv > 1 and - 
c 2 2. This completes the proof of the lemma. n 

Remark 15: From Corollary 12 and Lemma 14, in order 
to prove Conjectures 7 and 8 for the binary case we now 
need only show how to construct an (m, n; u, v)-SPM when 
u 5 m  < 2u (and, as always, given n > v or n = v = 1 and 
2uV = (m + u - 1)n). 

IV. THE MAIN CONSTRUCTION METHOD 

We next give a construction method which, in the binary 
case, leaves only the existence of SPMs satisfying u E { 1, 2} 
unresolved. We  show how arrays with these parameters may 
be constructed in a subsequent part of this paper. 

Construction 16: Suppose c, m, u, v are positive integers 
satisfying 

9 c>l 
ii) u<m 

iii) (m - u  + 1) 1 cU 
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(and hence let d  = c”/( m  - u + 1) and n = c”“/(m - u + 
1) + (U - 1)) and 

iv) if (m-u-t-l) 

is even then 2, > 2, else ‘u > 1. 
Suppose that 8 is a c-ary span u de Bruijn sequence (which 

exists by Theorem 2), and let {B, : 0  5 s < c”} be the set 
of subsequences of B of length m. 

Let (ri), (0 5 i < n), be ( m  - u + l)W-l repetitions of a 
d-ary span v de Bruijn sequence followed by the first ‘u - 1  
elements of this sequence (such de Bruijn sequences always 
exist by Theorem 2). Suppose also that (si), (0 5 i < n), is 
d” repetitions of a (m - u + l)-ary span II - 1  pseudorandom 
sequence for which the first v - 2  elements are all zeros, 
preceded by d” zeros and followed by ‘u - 1 zeros (again 
such sequences always exist by Theorem 2 and Lemma 3). 
Note that if m = u then (si) consists of cUU + v - 1  zeros. 
Finally, define the sequence (w;), (0 5 i < n) by 

i-l 

w; = xsjmod(m-u+l) 
j=o 

where wc = 0. Now define an m  x n  array by letting it have 
column i(0 5 i < n) equal to B~,-,+r),~+,~, i.e., the ith 
column consists of the subsequence B(m-U+I)r,+w, of the 
chosen c-ary span u de Bruijn sequence B. 

Theorem 17: Suppose c, rn; u, v satisfy the conditions of 
Construction 16. Then an m x n array A obtained using 
Construction 16 is a c-ary (m, n; u, v)-APM. 

Proofi For the purposes of this proof let 

t = (m - u  + l)‘--l - 1. 
First note that 

W ;+p,t - wi = 0 (1) 

for any nonnegative integers i and b satisfying d” _< i and 
i + ht < n. To show this, observe that, since (sj) is periodic 
with period t (for d” 2  j <  n  - 1) 

i+pt-I i-l 
W if@t - wi f c sj - C% (modm-u+l) 

j=o j=o 
i+pt-1 

=c sj 
j=; 

= ps 

where 
t-1 

s=-Jqsj 
i=o 

= (m - u  + 1)“-2(1 f 2  + . . . + (m - u + 1) - 1) 
= (m - u  + l)“-r(m - u) 

2 
Since ‘u > 2 if ( m  - u + 1) is even and ‘u > 1 if (m - u + 1) 
is odd, we have 

SZO (modm-u+l) 

Next suppose D is a u x v c-ary array-we need to show 
that this array occurs somewhere within the m x n  array A. 
To achieve this we show that it can occur at most once in 
the array, and by numerical considerations we have completed 
the proof. 

Suppose D has columns da, dr , . . . , d,-1, where 

4 = (&,o, di,l, . . . , &,u-1) 

is a c-ary u-tuple (0 5 i < u). Suppose also that D occurs 
in A both 

l in columns 5, 2 + 1, . . . ,z+v-landinrowsy,y+ 
I,... ,y+u-1, and 

l in columns x’, Z’ + 1;. . . ,z’ + v - 1  and in rows 
y’, y’ + l;..,y’+ u - 1, 

where 0 < x 5 n  - u, 0  5 y 5 m - u, 0  5 x’ 5 n - v, 
and 0 5 y’ < m - u. Hence, by definition of A we have 

di.i = b(m-u+l)r,+,+w,+,+y+j 

and also 

dij =  b(m-u+l)r,,+,+w,,+,+yl+j 

for every i, j, (0 5 i < 71, 0 5 j < u). Then 

b(,-,+l),~+~+,,+,+y+j = b(rn-u+l)r,,+,+w,,+,+y)+j 

for every i, j, (0 2 i < V, 0 5 j < u), and, since B = (bi) 
is a c-ary span u de Bruijn sequence 

(m - u  + l)r,+; + w,+; + y = (m - u + l)rZl+i 
+w z’+i + y’ (mod c”) (2) 

for every i, (0 5 i < v). Now we know that (m-u+l) 1 c” SO 

w,+; + y = wz/+i + y’ (mod m  - u  + 1) (3) 

for every i, (0 < i < w). Mow, by definition, 

z+i-1 

w,+i = c sj (modm-u+l) 
j=o 

and hence 

sx+i = Wx+i+l - Wz+i (modm-ufl) 

for every i, (0 5 i < u - 2). Thus by (3), we have 

Sz+i 5 Szl+i (modm-u+l) 

for every i, (0 5 i 5  2, - 2). Now (si) consists of d” 
repetitions of a (m - u  + l)-at-y span v - 1  pseudo-random 
sequence for which the first 2) - 2  elements are zeros (and 
hence the last element is nonzero), preceded by d” zeros and 
succeeded by v-l zeros. Since x+i 5 n-2 and x’+i 5 n-2, 
either 

9  s,+i =  Sz’+i =  0  

for every i, (0 < i < w - 2), in which case x, x’ E 
(0, 1,. . . , d” - l}, and the desired result follows. 
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or 

ii) x, x’ E {d”, d” + 1,. . . , n  - V} 

and x - Z’ (mod t) (since the pseudo-random sequence used 
to construct (s;) has period t). 

We  now claim that we must have 

wz+i =  W x ’+i (4) 

for every i, (0 5 i < v). In case i) this follows immediately 
from the definition of (w;), since we must have w,+; = 
‘w++i = 0 for every i, (0 5 i < v). In case ii) the desired 
result follows immediately from (1). Combining (3) and (4) 
we immediately obtain 

y E y’ (mod m - uf 1) 

and since y, y’ E {0, 1,. . . , m  - u}, we have 

y = y’. 

Substituting (4) and (5) into (2) we obtain 

(m - u + l)r,+i = (m - u + l)r,/+; (mod c”) 

for every i, (0 5 i < v), and hence 

r,+i E r,/+i (mod d) 

(5) 

for every i, (0 5 i < w). However, (r;) consists of t + 1 
repetitions of a d-ary span ‘u de Bruijn sequence, so 

x = x’ (mod d”). (6) 

Recall that either 

9 x, x’ E (0, 1,. . , d” - l}, 
or 

ii) 5,~~‘~{d~,d~+l,...,n-v) 

and x - 5’ (mod t). 
In case i), (6) immediately implies that x = x’. In case ii), 

if we combine (6) and the fact that x = X’ (mod t) (noting 
that (d”, t) = 1) we obtain 

x s x’ (mod d”t). (7) 

Now n - ‘u = d” + (d”t - l), and, by (7), we must have 

x = 5’. 

The result now follows. n 

Example 18: As an example of the above construction 
method, consider the case c = 2, u = 2, v = 3, and m  = 3 
(hence c”“/(m - ‘LL + 1) + v - 1  = n = 26/2 + 2 = 34 and 
so we construct a (3, 34; 2, 3)-APM). We  first need a 2-ary 
span 2 de Bruijn sequence, for example: 

B = (0 0  1  1). 

Hence, since m  = 3 we also have 

Bo = (0 0 1) 
B1 = (0 1 1) 
B2 = (1 1 0) 
B3 = (1 0 0). 

Now (r;) is 4 repetitions (plus the first two elements) of a  2-ary 
span 3 de Bruijn sequence, an example of which is provided by 

(0 0 0 10 111) 

and hence (ri) is 

(00010111000101 
11000101110001011100).  

Similarly (si) is 8 repetitions (preceded by 8 zeros and 
succeeded by two zeros) of a  2-at-y span 2 pseudo-random 
sequence starting with one zero, an example of which is 
provided by 

(0 1 1) 

and hence (si) is 

(00000000011011 
01101101101101101100).  

Then (wi) = (~~~~ sj mod 2) is 

(000000000 
0100100100100100100100100),  

and (2ri + w;) is as follows: 

(0 0 0 2 ‘0 2 ‘2 2 0 
0120322100302320102122300).  

Using (r;) and (wi) as indicated in Construction 16 we obtain 
the following (3, 34; 2, 3)-APM (see bottom of page): 

Remark 19: Construction 16 above is a modified version of 
[23, Construction 3.21, which is itself both a generalization of 
a construction of Ma [5], and a special case of a construction 
of Etzion [3]. 

( 0001011100010111000101110001011100 
0001011100110011100001010101111000 . 
1110100011101000111010001110100011 ) 
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Remark 20: It should be clear that, given that the conditions 
of Theorem 17 hold, if A is a c-ary (m, c”“/(m-u+l)+(w- 
1); u, w)-APM obtained using Construction 16, A will have 
its first pi - 1  columns equal to its last ‘u - 1 columns. Hence 
if A’ is obtained from A by deleting its last v - 1  columns 
then A’ will be a (m, c”“/(m - u + 1); U, v)-SPM. 

V. A SURGICAL CONSTRUCTION METHOD 

We next present a construction method which, in conjunc- 
tion with Construction 16 above and certain other observations, 
enables us to completely answer the existence question for 
binary SPM’s (and hence also for APM’s). 

Construction 21: Suppose rn; n, u, ‘u are positive integers 
where i) m > U, ii) n  > ‘u or ‘u = 1, and iii) (m - u  + 1) 
is even. Let A be a c-ary (m, n; U, v)-SPM, and put m’ = 
(m - u  + 1)/2 + (U - 1). Suppose also that, for some 
i, j E (0, 1;. . , n  - I}, the m’ x (V - 1) submatrix Di of 
A consisting of the entries in columns i, i + 1, . . . , i + II - 2  
(working modulo n) and rows 0, 1, ... ,m’ - 1, is equal to 
the m’ x (U - 1) submatrix Ej of A consisting of the entries 
in columns j, j + 1, ... , j + v - 2  (working modulo n) and 
rows m - m’, m-m’ + l,...,m - 1. Equivalently, if Ast, 
(0 5 s 5 m - u, 0  5 t 5 n - 1) are the m’ x (U - 1) 
semiperiodic subarrays of A, then suppose that AO; is equal 
to A,-,I,~ for some i, j. Then construct an m’ x 2n matrix 
A’ as follows: 

l Let columns 0, 1, . , i - 1  be equal to the first m’ entries 
in columns 0, 1; . . . , i - 1  of A (i.e., the entries in rows 
0, 1,. . . ,m’ - 1). 

l Letcolumnsi, i+l,..., i + n - 1  be equal to the last m’ 
entriesincolumnsj, j+l,...,n-1, 0, l,...,j-1 ofA 
(i.e., the entries in rows m - m’, m  - m’ + 1, . . , m  - 1). 

l Let columns i + n, i + n  + 1, . . . ,2n - 1  be equal to the 
first m’ entries in columns i, i + 1,. . . , n  - 1  of A (i.e., 
the entries in rows 0, 1, . . . , m’ - 1). 

Theorem 22: Let A be a c-ary (m, n; u, v)-SPM satisfying 
the conditions of Construction 21. Then A’ (constructed from 
A using Construction 21) is a c-ary (m’, 2n; u, w)-SPM. 

Proof Suppose D is any c-ary u by IJ array. We  need 
to show that D is equal to one of the u by v semiperiodic 
subarrays of A’. First note that, by the assumption of the 
theorem, D must be equal to a u by pi semiperiodic subarray 
of A. Suppose D is equal to the semiperiodic subarray Aij of 
A, where i, j satisfy 0 5 i 2  m - IL, 0  5 j 5  n  - 1. We  
need to consider two cases: 

i) 

and 

O<i<m’-u 

ii) ml-u<i<m--u. 

In case i), D will be completely contained in rows 
0, 1, . . , m’ - 1 of A. Hence, by definition, D will appear in 
A’. Similarly, in case ii), D will be completely contained in 
rowsm-m’,m-m’+1,~~~~m-1ofA,andhencemust 
again appear in A’. n 

In the remainder of this section we show how to apply 
Construction 21 to SPM’s satisfying c = v = 2 (i.e., binary 

arrays with subarrays having two columns). Observe that if A 
is a binary (m, n; u, 2)-SPM then, by Lemma 6 iii), we have 

(m - u + 1)” = 22u 

so there exists an integer k(O < Ic < 2n - 1) such that 

m  = 2” + (u - 1) 

and 

n  = 22u-k. 

We  next give necessary conditions for the repeated appli- 
cation of Construction 21 in this special case. We  first need 
the following definition. Suppose A is a binary (2” + (u - 
l), 22u--k; u, 2)-SPM for some integer Ic, (0 5 k < 22~ - 1). 
Suppose also that A contains pairs of columns (not necessarily 
disjoint) 

hb YO), (21, !h)>“.,(zk-l, Yk-1) 

with the property that entries 0, 1, . . , 2i + (u - 1) of zi are 
identical to entries 2i, 2i + 1, . . . , 2i+1 + (u - 1) of yi for 
every i, (0 5 i < k). Then A is said to satisfy Condit ion R. 

Lemma 23: Suppose Arc is a binary (ak + (u - l), 22U-k; 
u; 2)-SPM for some integer Ic, (0 < Ic < 2u - 1). Suppose 
also that Ak satisfies Condition R. Then Construction 21 can 
be recursively applied a total of u  times to Ak to produce 
a sequence of arrays Al;-1, AIM-2, ... , Ao, where A; is a 
(2i + (u - l), 22u--i; u, 2)-SPM for every i, (0 5 i < I;). 

Proof First observe that the existence of the pair of 
columns (z&r, yk-i) in & are sufficient to enable us to 
apply Construction 21 to Ak to obtain a (2k-1 f (u - 
11, 2 2u-kf1; u, 2)-SPM which we call &-I. We  now show 
that Ak-1 satisfies Condition R and the result then follows 
by induction. 

In constructing Ak-1 from Ak, every column of Ak, 2 say, 
is used to produce two columns of Ak- 1. Label these columns 
2” and z’, where zU contains the first 2’-l+ (u - 1) elements 
of 2 and 5’ contains the last 2”-r + (u - 1) elements of 2. 
It should then be clear that the following pairs of columns of 
Ak-l have the properties required for Condition R to hold: 

(4, Y;), (6, YY)>...,(G-,, YE-2). 

The result now follows. n 
We next show how to construct SPM’s suitable for use in 

Construction 21, i.e., satisfying Condition R. To do this we 
need the following construction method given in [23], which 
we repeat below for the special case v = 2. 

Construction 24: Suppose u and k are positive integers 
satisfying 

u+l< 2k < 2n. 

Suppose Co, Cl,. . C2+-1 are the 2n-k cycles of length 
2” of a (a’, 2,.~)-Perfect Factor (such a Perfect Factor exists 
by Theorem 4). Let (ri), (0 5 i < 22u-k), be 2” repetitions of 
a 2U-k-ary span 2 de Bruijn sequence. Suppose also that (si), 
(0 2 i < 22u-k), is 22(U-k) repetitions of a 2”-ary span I 
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pseudorandom sequence, preceded by 22(u-k) zeros. Finally, 
define the sequence (w;), (0 5 i < a”“-“) by 

i-l 

wi = 
c 

sj mod 2’” 
j=o 

where wo = 0. 
Now define a 2” x 22U-k array by letting it have column 

i, (0 < i 5  22u--k - 1) be equal to Twx(Cvx), i.e., the ith 
column consists of the cycle CTz of the chosen Perfect Factor 
cyclically shifted by wi places. 

The following result is also taken from [23]. 
Theorem 25: Suppose u and’ Ic are positive integers satis- 

fying 

u+ 1 I 2k < 2”. 

Then a 2” x 22U-k array A obtained using Construction 24 is 
a (a”, 2’“-“; u, 2)-PM. 

We  can now state the following. 
Lemma 26: Suppose u > 3 and let K be the unique integer 

satisfying 

2K-i < u < 2K. 

Then Construction 24 can be used to obtain a (2K + (u - 
11, 2 2U-K; u, 2)-SPM satisfying Condition R. 

Proof First note that, since u > 3, we must have 
u > K, and hence IL and K satisfy the conditions of 
Theorem 25. Hence we can use Construction 24 to obtain a 
(25 22-K; IL, 2)-PM, A say. By using the technique of Sec- 
tion III we can derive the desired (a”+(~-l), 22u-K; u, 2)- 
SPM, A’ say. It remains to show that A’ satisfies Condition 
R. 

The following statement can be deduced from the proof of 
Theorem 25 contained in [23]. 

Every pair of cycles from the Perfect Factor used 
to construct A occur as consecutive columns at every 
possible relative shift somewhere in A. 

Hence, for every i, (0 < i 5  K - I), there exists a j;, 
(0 5  ji 5  2K - 1) such that Tjt (Co) and Tj,+2z (CO) 
occur as consecutive columns in A, where ji + 2i is computed 
modulo 2K. It should be clear that the entries in positions 
0, 1, . . , 2i + u - 1  of Tjz (Co) are the same as the entries in 
positions2i, 2i+l,~..,2”+1+u-10fT,~+2~(Cu),giventhat 
the entry positions are calculated modulo 2K where necessary. 

If z is a vector of length m, let E,(z) denote the vector 
of length m  + u - 1  obtained by adjoining to the end of z its 
first u  - 1  elements (given m > u). Then it should be clear 
that if A has columns 

zo, z1,“‘,z22u-K-l 

then A’ has columns 

&h(zo), &(a), . . . , G(Z22u-K-1). 

Thus if 

~1% = Tj, (Co) 

and 

ZL+I =  Tj,+2” (Co) 

then the entries in positions 0, 1, . . , 2i + u - 1  of E,(zli) are 
the same as the entries in positions 2i, 2i + 1, . . . , 2if1 + u - 1  
of E,(z~~+l). Hence if we set 

xi = E,(Zlt) 

and 

then the pairs 

(20, !/Oh (Xl, Yl), ‘. > @K-l, !/K-l) 

have the properties required to ensure that A’ satisfies Condi- 
tion R. The result now follows. n 

The ,following result is immediate from Lemmas 23 and 26. 
Corollary 27: For every pair u, k satisfying 

O<k<u,u~3 

Constructions 21 and 24 can be used to construct a (2” + u - 
1  1 22U-k; u, 2)-SPM. 

VI. COMPLETING THE BINARY CASE 

We now consider for which parameter sets we can con- 
struct SPM’s using the techniques described above, with the 
objective of proving Conjecture 8 for the binary case. 

First note that, by Remark 15, we need only show how 
to construct a binary (2” + u - 1, 2”“-k; u, v)-SPM for k 
satisfying 1 5 2k 5 u. Now observe that, if 2” < u then, 
since u > 1, we must have k < u. But by Theorem 17 and 
Remark 20 we can construct a (2’+u- 1, 2uV-k; u, v)-SPM 
for every u, v, k given that 

Hence, given v > 3, we have shown that Conjecture 8 holds 
in the binary case. 

In addition, by Corollary 27, if u  > 3 we can construct 
a (2” + u - 1, 22U-k; u, 2)-SPM for every u, Ic given that 
0 5 k < u. To complete the main objective of this paper, i.e., 
to show Conjecture 8 holds in the binary case, we need only 
consider the following three cases: 

i> w=l 
ii) v=2 and u=l 

and 

iii) lJ=u=2. 

Case i) is covered by [6, Construction A and Theorem 10(i)], 
observing that when u = 1 the definition of an SPM coincides 
with the definition of an APM. In case ii) there is only one 
possible parameter set for an SPM, namely (1, 4; 1, 2), since 
we must have n  > w = 2. Such an array clearly exists (it is 
nothing more than a span 2 de Bruijn sequence). 
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( 

0011001100110011 
0000011011011011 > 

Fig. 1. A (2, 16; 2, 2).Semiperiodic Perfect Map. 

Fig. 2. A (3, 8; 2, 2)-Semiperiodic Perfect Map. 

In case iii) there are only three possible parameter sets for 
an SPM, namely 

(2, 16; 2, 2), (3: 8; 2, 2), (5; 4; 2, 2). 

A (5, 4; 2, 2)-SPM can be derived from a (4, 4; 2, 2)-PM as 
in Section III above. Examples of a (2, 16; 2, 2)-SPM and a 
(3, 8; 2, 2))SPM are given in Figs. 1 and 2. 

VII. THE DECODING PROBLEM 

As discussed in [6] and [23], the application of Perfect 
Maps in position location applications requires a method for 
decoding. By decoding we mean a method for computing the 
position of a given subarray within a Perfect Map. 

For those APM’s and SPM’s derived from Periodic Perfect 
Maps using the techniques of Section III, the decoding problem 
will be precisely the same as the decoding problem for the 
Periodic Perfect Map from which they are derived. This will, 
in turn, depend on the method used to construct the Periodic 
Map. Hence we do not discuss it further here. 

The SPMs constructed using Construction 16 can almost 
certainly be decoded efficiently using a similar method to 
that described in detail in [23]. This is because the method 
of construction is very similar to that described in [23]. 

Finally, we consider those SPM’s constructed using Con- 
struction 21 from other SPM’s. It is straightforward to see 
that any decoding method for an SPM input to this method 
of construction can be modified to provide a decoding method 
for an output SPM. This modified decoding method need only 
incorporate information as to where “surgery” was performed 
on the original SPM. 

VIII. CONCLUSIONS 

In this paper we have shown that binary Semiperiodic and 
Aperiodic Perfect Maps exist for all possible parameter sets, 
i.e., Conjectures 7 and 8 hold when c = 2. More generally, 
we may also draw conclusions about the validity of these 
conjectures for c > 2. Suppose, as one might conjecture, that 
the necessary conditions of Lemma 1 are also sufficient for 
the existence of a Periodic Perfect Map. As we have already 
observed, Paterson [l] has shown this to be true for the binary 
case. Then the construction methods presented in this paper are 
sufficient to almost completely resolve Conjectures 7 and 8 for 
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general c. It seems probable that the only case which would 
present any problems is when II = 2, and some variation on 
the theme of Section V can possibly be used to construct the 
desired SPM’s in this case; 

Finally note that the construction methods described here 
can possibly be generalized both to the multidimensional case 
of Perfect Maps and to a multidimensional generalization 
of Perfect Factors. Indeed, it would appear plausible that 
the obvious necessary conditions are sufficient for all these 
multidimensional de Bruijn-like structures, although proving 
this will probably require some new construction techniques. 
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