
Intern. J. Computer Math., Vol. 63, pp.2l5-226
Reprints available ditectly from the publisher
Photocopying permitted by Ii=se only

@ 1997 OPA (Overseas Publishers Associa1jon)
Amsterdam B.Y. Published in The Netherlands uoder

license by Gordon and Breach Science Publishers
Printed in Malaysia

A FAST MODULAR EXPONENTIATION
FOR RSA ON SYSTOLIC ARRAYS

YONGFEI HAN*, C. J. MITCHELL and D. GOLLMAm

Dept. of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 OEX, U. K

'Received

4 April 1995)

This paper presents two systolic algorithms for modular exponentiations based on a k-SR
representation. In a systolic k-SR scheme, throughput is one modular exponentiation of a mess3,ge
block having n digits in every clock cycle, with a latency of nearly Sn/4 cycles to output the filial
result. The speedup for a group of messages having I message blocks is around (ii + ~), compared
to a single processor or processing element for modular multiplications. The scheme saves nearly ~
processing elements and around ~ modular multiplications, compared with the scheme in [23].

Keywords: Cryptography; RSA; modular exponentiation; systolic arrays

C.R. Categories: Fl.2, 1,2, E.3

1. INTRODUCTION

Modular exponentiations of integers are basic operations for several wt:ll
known cryptographic algorithms in public-key cryptosystems such as the
RSA scheme [18]. The security of these cryptosystems is based on the
difficulty of factoring integers. To achieve enough security, the word lengths
and key lengths in the modular exponentiations should be significantly
greater than those used in conventional general-purpose computer hard-
ware. The currently required typical word length is around 512 bits or more,
and it will grow in future as the cryptanalysis makes progress.

*The first-author is supported by the ORS Award and the DTIjEPSRC LINK Personal:ommunications
Programme project under UK EPSRC research grant GRjJ17173.

215

Y. HAN et al.216

The requirement on the lengths makes RSA slow. The encryption and
decryption rate is much slower than with symmetric algorithms. The expe:rt
group in the DECT system ruled out public key cryptographic algorithms in
the implemented telecommunication system since they are too complex in
computation, although they are an attractive option. While the DECT
system requires the cryptographic algorithm to execute in 10G-200 ms, tile
RSA imp.1ementation took around 1-2 seconds on an Intel 80286 level
microprocessor. GSM also ruled out public key cryptographic algorithrns
[13]. When bulk data are transmitted in mobile telecommunication systems,
cryptographic algorithms are also required to be fast and cheap for tile
encryption and decryption of bulk data. Hence it is quite natural to speed IIp
modular exponentiation.

Many efforts have been made to speed up public key cryptograplric
algorithms. One of them is to reduce the computational complexity of the
algorithms. Much meaningful research work has been reported [12,14,17].
Another is to utilize parallel techniques to perform faster implementation
[3,4,21]. Systolic arrays [16], as a parallel means, have been applied in mallY
fields [7,8,5,9,10]. The central point in the systolic approach is to ensure tblat
once an information item is brought into the system it can be used effectiv<:ly
and repetitively while it is being 'pumped' from cell to cell through the
system. Combinations of multiprocessing and pipelining are the crux of the
systolic approach of parallel processing.

Some systolic algorithms for public key cryptography have appeared. Ko~
and Hung [2] presented a systolic algorithm for modular multiplications
which suffers from excessive latency and a slow clock. Shand, Bertin alld
Vuillemin [20] described a pipeline which is similar to one row of the systolic
array presented by Walter [22] where the scheme is only for modular
multiplications and the latency of 2n + 2 clock cycles is much higher. Note
the clock cycles in systolic arrays for modular multiplications are differe:nt
with clock cycles in following modular exponentiations.

A linear systolic array implementation for RSA based on a binary
algorithm was proposed by Zhang and Yun [24]. Further, Zhang present:ed
a systolic array implementations for RSA based on a signed-digit
representation [23]. The first of them needs 2n processing elements. 1'he
second requires ~ processing elements. In their schemes, however, M-1 is
brought into every cell but is not used effectively, that is, M-1 is not used for
computations in many cells although it moves through each cell.

The systolic system presented here proposes a systolic modular
exponentiation based on k-SR representations and fast modular multi-
plications. Our scheme is based on the fact that the k-SR algorithm is faster

SYSTOLIC MODULAR EXPONENnAllON :?17

than the signed-digit algorithm because it needs less modular multiplications
and no precomputation of M-1.

2. BASIC ALGORITHMS

In the RSA cryptographic algorithm, first randomly find two large primes p
and q and define N = pq. M is a message to be transmitted as an integer in
the range 1, ..., N -1. M has to be broken into blocks if it is too big. Such a
block is called a message block in this paper. Encrypt M into a cryptogr;1.nl
C by the rule

c = ~(mod N)

and decrypt by using the private key d and the formula

D = cI(mod N)

Both encryption and decryption are modular exponentiations. The common
method for performing modular exponentiations is the 'square and multipJy'
algorithm [15]. This algorithm is briefly described as follows. If 1:he

computation

~(mod N)

is required and e has the binary representation

e,,-le,,-2' , 'eo

where e,,-l is the most significant bit, then the 'left to right' version of 1:he
algorithm works as follows:

Algorithm: Square and Multiply

x= Ij
for (i=n-l; i~Oj i --){

x = x2(mod N};
if(ej = 1)
x = x x M (mod N);

Mitchell [6] proposed Canonical k-SR representations for integers. In this
representation, we use coefficients 2i -1, 0 ~ i ~ k. The representation
converts i consecutive ones to the coefficient 2i -1 for any i satisfyi[ng
2 ~ i ~ k, where k is fixed. The converting procedure starts from the most
significant digit replacing every string of i consecutive ones with a string of

Y. HAN et al.218

i -1 zeros in the (i -1) most significant positions and 2i -1 in the least
significant position. The definition of the least significant bits and the most
significant bits in the paper follows ISO/IEC 9797 [1].

Now let e have an k-SR representation

f(r -l)f(n -2).. .f(O)

where f(r -1) is the most significant digit and iti) E (0, 1,3,
7, ..., 2k -1), i < r. Combining 'square and multiply' with precomputations
of m3, ..., m 2k-l (mod N), then, a modified 'left to right' version of the

square and multiply algorithm with k-SR representations works as follovvs:

Algorithm: Square and Multiply with k-SR representations

x = mitT-I) (mod !'I);
for (i=r-2; i~O; i--){

x = xl (mod !'I);

if(j(i) # 0)
x = x x MJ(i) (mod !'I);

The algorithm reduces the number of modular multiplications to about 1J!/4

when k becomes large [6].

3. SYSTOLIC ARRAY AND ALGORITHMS

We first design a cell (processing element) for the systolic arrays.

DEFINITION 1 A systolic cell is defined as a junction in which:
Dout = c!>(Din, B,.fs(i)). BE (M, M3, M7, ..., M2k-l mod N). .fs(i) is a control

junction.

DEFINITION 2 In a cel/,

Dout = DrnmodN if fs(i) = o.

Dout = Din X M<2fl.')-I)modN fs(i) ?:
Dout = 0 if fs(i) = Q.

a denotes an empty operation as the input symbol.
The framework of the cell is shown in Figure 1 where're' is aiegister.llhe

precomputed value or M is fed into the cell through B. Din is fed by the
output result of the left-cell through Dout. Hence, in a cell, only one modular

SYSTOLIC MODULAR EXPONENTIAnON 219

FIGURE 1 The framework of a cell in systolic

multiplication or modular square can be computed since modular squarles
can be computed in a modular multiplier.

We then design a linear systolic array in Figure 2 to execute the
encryption and decryption of RSA. BE (M,M3,M7,... , Mi'-l(mod j\{)) is
fed into the cells from the top. The signal fs(i) is a control function of the
operations inside the cells. For a fixed exponent,fs(i) is also fixed and there
is really one value B can take. No operation will be done if f(i) is a as
defined in Definition 2.

Suppose the k-SR representation isf(r -l)J(r -2).. .f(O). We design aLn
algorithm to derive a systolic k-SR representations fs(r + q -2)fs
(r + q -3) ...fs(O), where q is respectively defined as

DEFINITION 3 q is the number of non-zeros in a k-SR representationfir-I)...fiO).

We make use of q and r to analyse the computational complexity.
The idea in the systolic algorithm is to perform a modular square or

modular multiplication with a fs(i), which is different from the binal."y
representation and k-SR representation. The algorithm converting to systolic
k-SR representation scans f(r -l)f(r -2) ...f(O) starting from 1(0). If
f(i) = 0, fs(j) = 0, Iff(i) ~ O,fs(j + 1) = 0, and fs(j) = logz (f(i) + 1).

Mf..-l)modN -

'-

P_GURE 2 A linear systolic array.

220 Y. RAN et al.

Note that in the square and multiply algorithm with a binary
representation, if ej # 0, ej controls two operations to be performed: one
modular square and one modular multiplication. With the k-SR represelJta-
tions, f(i) has the same function as ej to control two operations to be
performed. In the systolic k-SR representations, every fsU) determi:nes
one operation: either a modular square or a modular multiplicati,on.
Hence, every f(i) # 0 has two corresponding coefficients fsU+ IlrsU)
with fsU+ 1) = 0 and!sU) = log2(f(i) + 1). By setting fs(j) = log2U'"(i)
+1), we reduce the number of bits required to store f(l) from k to
log2(k + 1). The most significant position f(r -1) does not have to be
split into two operations and corresponds to a single coefficientsfs(r

+ q -2).

Algorithm: Converting to Systolic k-SR Representations

i~ OJ

j=Oj
while (i < r- 2) do {

if f(i) = 0 then {fs(j) =j(i)jj=j+ Ij}
.if f(i) ~ 1 then {fs(j) = log2(j(i) + I)jj = j + Ijfs(j) = Ojj = j + J[

fs(j) = f(r -1);

Suppose [is the number of message blocks. A k-SR systolic algorithm first
computes Mf(r+q-2), 1 ~ i ~ [,Is denotes a systolic k-SR representati,on.
Then it performs the square and multiply.

Systolic k-SR Algorithm

for (i = 1; i ~ I; i + +)
{Xi = M{s(r+q-2)modNj

i= 1;
j = r + q -3;
pipeline for Xi {
while j :?: 0 and i ~ 1 do {

if J,(j) = 0
then Xi = xfmodN

if fs(j) :?: 1
then Xi = Xi X Mfli) mod N

221SYSTOLIC MODULAR EXPONENTIATION

j = j -1;

end the pipeline

In RSA encryption and decryption, e, d and N are fixed. Suppose that 1
message blocks Mi, i = 1,...,1 have to be encrypted or decrypted. The
exponents e and d can be converted to their k-SR representation. Then the
k-SR representation is converted to the systolic k-SR representation. Vallies
of precomputations are stored in a group of local memories denoted by LM
where each local memory is connected with a cell. That is, r + q -3 lol;al
memories are working with a common clock as r + q -3 cells are working
with the common clock. A message block is fed to Din of cell 1 in one clock
cycle. In every common clock cycle, Dout of cell i is forwarded to Din of c:ell
i + 1; output of LM i is forwarded to LM i + 1. Every common clock cy,cle
may be divided into several clock cycles for LM. Several values of
precomputations could be transmitted between LM i and LM i + 1 whilc~ a
modular multiplication is done in cells in one common clock cycle. Since we
are working on the level of algorithms, the paper does not discuss further
the detail of the bandwidth and how to produce a chip.

Figure 3 shows the linear systolic array roning in the third clock cy(:le,
where P2 is h(r+q- 2)/ s(r+q-3)fs(r+q-4),PI is h(r+q- 2)h(r+q-3).po
is h(r + q -2). .

The whole systolic system works as a pipeline. The precomputed
exponents ~i-l(i~k)modN are stored in a group of local memoI1es
which can send data to cells from the top. A host system sends Mi(i ~ 1) to
the first cell from the left. h(r + q -3) controls operations inside cell 1. If
h(r+ q -3) #0, a precomputed value depending on the value ofh(r + q -3)

FIGURE 3 In third clock cycle.

222 Y. RAN et at.

is fed into cellI through B to perform a modular multiplication operation. It
is not necessary that the host system must be a computer. In the case of real-
time signal processing, e.g. cable TV signal, systolic systems are suitable for
devices accepting encrypted signals and then passing them on to a systolic
array. The precomputation of M2i-l mod N can be performed by a h'Dst
system or a computer attached to the local memories. Then these values :ue
distributed to every cell by local memories.

In the k-SR representation, the k is fixed in a practical system. The input
.fs(i) to a cell is set to a before M1 or its exponentiations reaches the cell.lne
whole array is synchronized by a common clock to compute the sequence
M1(mod N) or Mt(mod N). It will take r + q -3 clocks for the first result
to appear in the output of the array, after the input data flows into the arr;ay.
The last message block M[will come out of the array in (r + q + [- 3)-th
clocks. This time period is referred to as computation time.

In bulk data transmissions, [is quite large. If [» q + r -3, the systolic
system has high load because the systolic system is full after the (r+q- 2)- th
clock cycle and before the [- (r + q -2)-th clock cycle. In some cases of
digital transmissions, [is not large and the system has lower load. We work
out a flexible algorithm suitable for these cases.

DEFINITION 5

r+q-3
2

We divide fs(r + q -3) ...fs(O) into nl groups where the length of each
group is m. Hence there are m cells in a systolic array. The second group
fs(r + q -3 -m).. .fs(r + q -4 -2m) controls the computation of me:ss-
ages after the first groupfs(r+q-3.)...fs(r+q-4-m-l) compulled
M1r-2)..J(r-3-m), ..., M1r-2)..Ar-3-m) mod N. We call the algorithm the rilng
systolic algorithm because messages flow like a ring on a systolic array
where the number of cells is fixed and values of the control signal fs(i) :iIe
changed, which is an important difference to the previous array.

Ring Systolic k-SR Algorithm

for (1= l;!i~ l;i++)
i

{Xi =i Mf(r+q-2)mod N; }
i = I, !

, ,
j = r+ q -+ 3:, '

SYSTOLIC MODULAR EXPONENTIAnON :t23

pipeline for xii
while j ?: r!+ q -m -4 and i ~ 1 do

if !s(j) = 0
then Xi = xfmod N:

if !su) ?: I
then Xi = Xi x Mj(i) mod Nj

j=j-lj
}
} end the pipeline

i= 1. I,
j = r + q -3 -(nl -1)m;

pipeline for Xi {
while j ~ 0 and i ~ I do {

if !aU) = 0
then Xi = xi mod N:

if !a(j) ~ 1
then Xi = Xi X Mfii) mod N;

j = j -1;

end the pipeline

It will take (1- m) * (ni -1) + m * ni clocks for the final result of MI. The
final result of the last message block M[will come out of the array in tile
(1- m) * (nl) + m * nl-th clock cycle. For a message block, the computatioln
time is (l-m)*(nl-l)+m*nl.

4. COMPARISON WITH OTHER TECHNIQUES

Based on k-SR representations, the systolic k-SR algorithm for the linear
systolic array implementation of RSA requires about ~ cells. Note that r is
very close to n, and q is close to ~ in an ideal situation, so we may ignore thle
difference between rand n, and q and ~. Hence, the latency of a modulalr
ex~onentiation of a message block is ~. The product of time and area :lS
O~~l. Compared to Zhang's scheme, the systolic k-SR scheme save:s
about ~ cells. The speedup is also around ~ time. The ring systolic k-S]~
scheme could save more than ~ with increased time consumed.

Suppose the latency of the modular multiplication is T. The computation
time for I message blocks is ~nlT on average in the square and multiply

224 Y. HANetal.

TABLE I Comparison of Algorithms

(l-m) * (n\ -1) +n\m

2n

~ k -IS + k -1M 211 + log2k + 1

1 M-1 211+3
1+3ii

~ k-lS+k-IM 2II+log2k+ I

~ 211+2

algorithm with binary representations using a single processor or cell. In
systolic k-SR scheme, it is inT + IT. So we have

inT+ IT 5 2
--+-

~nlT -61 3n

From [19], the fastest VLSI hardware implementation for RSA is about
1000 times slower than DES. In software, DES is about 100 times faster
than RSA. The systolic k-SR scheme can be about 1000 times faster than the
fastest VLSI hardware implementation for RSA when I is 100000 and n is
672 with 840 cells.

The ring systolic k-SR scheme could reach the speed with less cells and
more message blocks. The computation time for I message blocks is 1* n1 in
the scheme. Hence we have

[niT

~=
2n)
3n

When n is 600, and nl is 3, the scheme could speed up 300 time with 260
cells, compared with a single faster RSA processor.

A comparison of these schemes with the schemes presented by Zhang [23],
and Zhang and Yun [24] is listed in Table I where k -I Sand k -1 M is
k -1 squares and k -1 multiplications.

5. CONCLUSION

Two systolic k-SR algorithms and a linear systolic array for modular
exponentiations have been presented. The array has simple, re:gular
communication and control structures, and is thus very suitable for very-
large-scale integration implementation. The proposed algorithms employ
the k-SR representation which significantly reduces the number of modular

SYSTOLIC MODULAR EXPONENTIATION 225

multiplications in RSA, and also reduces the number of cells in systolic
arrays. The schemes is suited to RSA cryptography in image transmissions,
also suitable for other bulk data. Further, it achieves better systolic design
measurement in terms of the product of area and time. Unlike other schemes
proposed in [2,20,22,23,24], the ring systolic k-SR scheme could be
implemented using currently available technology while a common clolck
cycle consists of 2i(i ~ 3) clock cycles so that each clock cycle drives about
100 to 200 bits to a cell. The systolic algorithms is also suited to signed-digit
representations, minimal k-SR representations [11] and SS(I) represt:n-
tations.

Acknowledgments

The first author Yongfei Ran would like to thank Prof. D.J. Evans for]i1is
help on systolic algorithms when he was with Loughborough University of
Technology .

References

[I] ISO/IEC 9797. Information technology -security techniques -data integrity mechanism
using a cryptographic check function employing a block cipher algorithm. Second editi'Dn,
1994-04-15.

[2] K~, C. K. and Hung, C. Y. (1991). Bit-level systolic arrays for modular multiplicati'Dn.
J. VLSI Signal Processing, 3, pp. 215-223.

[3] Eldridge, S. E. and Walter, C. D. (1993). Hardware implementation of montgomeIY's
modular multiplication algorithm. IEEE Trans. Computers, 42(6), pp. 693-699.

[4] Eldridge, S. E. (1991). A faster modular multiplication algorithm. International Journal of
Computer Mathematics, 40, pp. 63-68.

[5] Evans, D. J. (1991). Systolic Algorithms. Gordon and Breach Science Publishers.
[6] Gollmann, D., Han Yongfei and Mitchell, C. (1996). Redundant integer representations

and fast exponentiation. Designs, Codes and Cryptography, 7, pp. 135-151.
[7] Han Yongfei and Evans, D. J. (1994). Parallel inference algorithms for the connectj,on

method on systolic arrays. International Journal of Computer Mathematics, 53(34),
pp. 177-188.

[8] Han Yongfei (1983). Simulation systems for Bit-Slice VLSI. Journal of Computer
Engineering (Chinese) No.4.

[9] Han Yongfei and Evans, D. J. (1995). On systolic arrays and neural nets for inference.
International Journal of Computer Mathematics, to appear.

[10] Han Yongfei and Evans, D. J. (1992). The simulation methodology using models and
parallel languages. Proc. of the 92 Summer Computer Simulation Conference. pp. 58~6I.
Reno, Nevada, USA.

[11] Han Yongfei Mitchell, C. and Gollmann, D. Minimal k-SR Representations. Technical
Report in preparation, Dept. of Computer Science, Royal Holloway, Uni. of London.

[12] Hui, L. C. K. and Lam, K. Y. (1994). Fast square-and-multiply exponentiation for RS:A.
Electron. Lett., 30(17), pp. 1396-1397.

[13] European Telecommunications Standards Institute. ETS 300 175-7 Radio Equipmc:nt
and Systems (RES); Digital European Cordless Telecommunications (DECT) Common
interface Part 7: Security feature. (1992).

Y. RAN et al.
226

