jﬂ

Algorlthms for software |mplementatlons of RSA

A. Selby
C. Mitchell

Indexing term: Algorithms

Abstract: Two new algorithms that facilitate the
implementation of RSA in software are described.
Both algorithms are essentially concerned with
performing modular arithmetic operations on very
large numbers, which could be of potential use to
applications other than RSA. One algorithm per-
forms modular reduction and the other performs
modular multiplication. Both algorithms are
based on the use of look-up tables to enable the
arithmetic computations to be done on a byte by
byte basis.

1 Introduction

The purpose of this paper is to describe two new algo-
rithms for use in constructing software implementations
of the RSA cryptosystem. These algorithms will enable
software implementations to run faster than was pre-
viously possible. As is well known, RSA is a potentially
extremely valuable cryptographic technique. However, it
has the major disadvantage that fast implementations are
notoriously difficult to construct, whether they are in
hardware or software. Any new algorithms which speed
up RSA implementations are therefore of great potential
value.

The RSA algorithm is very simple to state. To use it
one first needs to choose a value N, typically 512, which
determines the security level at which the algorithm will
operate. The implementation of RSA relies on computing

m® (modulo s)
where s has an N-bit binary representation, and
me<s

In fact, s is always chosen to be the product of two (N/2)-
bit primes. When the values of the primes are known by
the user, the RSA computation can be carried out by per-
forming two computations of the type

a® (modulo ¢)

using values for a, b and ¢ of (N/2) bits each (see, for
example, Quisquater and Couvreur, [1]). When the
primes are not known, it is almost always true that the
exponent e can be arranged to have a small number of
bits (say 32); see, for example, Reference 2.

Paper 6612E (C1, C2), first received 23rd December 1987 and in revised
form 17th January 1989

C. Mitchell is with Hewlett Packard Laboratories, Filton Road: Stoke
Gifford, Bristol BS12 6QZ, United Kingdom

A. Selby is with Trinity College, Cambridge CB2 1TQ, United
Kingdom

166

Therefore, in practice it is rarely if ever necessary to
perform a ‘full’ N-bit exponentiation. However, when N
is large, e.g. N = 512, it is still very time consuming to do
the computation for (N/2)-bit numbers.

The values e and s form part of the encryptlon and
decryption keys, and are therefore fixed for a number of
encryption operations. The value m is dependent on the
information being encrypted (or decrypted) and therefore
varies from computation to computation.

The ‘standard’ method for doing the modular expo-
nentiation is by using the well known ‘repeated square
and multiply’ technique (see, for example, References 3 or

4). The ‘left to right’ form of this algorithm involves

repeatedly squaring and multiplying by a ‘local’ fixed
value (modulo a ‘global’ fixed value). The ‘local’ fixed
value is dependent on m, i.e. is fixed for the duration of
the encryption computation. The ‘global’ fixed value, i.e.
the modulus, depends on the key and is therefore fixed
for a number of encryption operations. We use this
notion of local and global fixed values throughout this
paper.

The algorithms described are concerned with speeding
up these modular arithmetic operations. They both take
advantage of local and global fixed values to pre-
compute ‘look-up’ tables whose use speeds the individual
calculations. They both also work on a block by block
basis, i.c. they make use of the fact that computers
operate on strings of several bits at a time, rather than on
individual bits.

In the remainder of this paper we describe the two
algorithms in more detail. For each algorithm we first
give an informal, verbal description, and then give a more
precise, pseudo-code formulation. The form of these
descriptions has been chosen to make actual implementa-
tions easy to construct. For both algorithms we also give
proofs of correctness and brief complexity analyses.

In the descriptions of the algorithms we use the follow-
ing notational convention. We suppose all numbers are
stored in 32-bit words, and we denote the individual
words of the 32n-bit number a by

a[0], a[1], ..., a[n — 1]

where a[0] contains the least significant word and
a[n — 1] the most significant word. Hence

a = a[0] + 232 - a[1] + 2% - a[2]
4o 232(-1) , a[n _ 1]

We. then write a[] for the collection a[0], a[1],
a[n — 1]. We also write T for 232n. Finally, note that
although both algorithms are described in terms of 8-bit
bytes and 32-bit words, they would work equally well
with other byte and word lengths.

IEE PROCEEDINGS, Vol. 136, Pt. E, No. 3, MAY 1989

2 Algorithm A

2.1 Informal descr/pt/on

Algorithm A is concerned with ‘modular reduction’.
Given a 64n-bit number k and a 32n-bit modulus d it
outputs a 32n-bit number k', where :

k' = k (modulo d)

To do this it uses a table of values pre-computed using
the modulus d. This table does not need to be re-
evaluated for each computation since it is dependent on a
global fixed value. In the context of RSA, algorithm 4 is
useful when computing modular squares. Using ideas
given in Reference 3, squaring can be made considerably
faster than a square-mod. method which reduces modulo
d as it works out the answer, so it is quicker to use a
fast non-modular squaring algorithm followed by algo-
rithm A.

The idea of the algorithm is to reduce the length of k
by 8 bits (i.e. one byte) at a time. At the beginning of each
step it is assumed that k is 4n + i 4+ 1 bytes long, (where i
ranges from 4n — 1 down to 0), together with an extra bit
at the most significant end which may be 1 or 0 (this is
‘left over’ from the previous iteration). At each step of the
algorithm, the largest multiple of d that can be safely sub-
tracted from k is subtracted. This process uses the table
atab, set up in advance. By safely we mean the largest
multiple of d that can be subtracted to leave the result
positive, given that only the most significant 9 bits of k
are examined. This results in a value of k which has the
byte under consideration set to either 0 or 1 (this single
bit forming the ‘left over’ bit for the next subtraction).-

In more detail, the table atab consists of 512 entries of
the form

atab[i], 0<i< 511,

where each entry consists of an (n + 1)-word multi-
precision integer. In the precomputation phase, atab[i] is
set to the unique integer multiple gd of d defined so that

int{gd/T) =i—1
and
int{(g + Dd/T) =i
and there, as throughout this paper, int(x) denotes the

-unique integer § satisfying

s<x<s+1

The computation of this table may be achieved by a very -

simple combination of additions and comparisons; no
multiplications or divisions are required.

As previously noted, in this paper we describe a
version of the algorithm which operates on 8-bit bytes
and thereby requires atab to have

26+ = 512

entries. If one modified the algorithm to reduce by w bits
at a time then atab would need to contain 2 * 1) entries.
In the main algorithm, atab is used to compute a value
k' satisfying
k' = k (modulo d)
and
O0<k<T+2d-1

As before, we suppose that k is stored in 2n 4-byte words,
i.e. 8n bytes, where the bytes are labelled 0, 1, ..., 8n — 1
and byte 0 is the least significant. The following two steps

IEE PROCEEDINGS, Vol. 136, Pt. E, No. 3, MAY 1989

N

. Thus g - d (where d is stored in d[0], ...,

are repeated 4n times, for a value of i descending from
4n—11t00:

(a) Examine bytes 4n+i+1 and 4n+i Byte
4n + i + 1 will be set to either zero or one, and thus the
value j obtained by regarding the byte pair as an integer
will satisfy 0 < j < 511.

(b) Subtract 28' times atab[j] from k. This will have
the effect of clearing byte 4n + i +'1 and resetting byte
4n + i to either zero or one.

2.2 Pseudo-code description
Input: k[] (a 2n-word number)
d[] (an odd n-word constant, where d > T/2.

Note that both the constraints on d are

imposed merely to simplify the description of

the algorithm. They may both be removed by

making small modifications to the algorithm).

Output: k[] (an n-word number congruent to the origs
inal k[] modulo d)

Method: Prior to performing individual computations it
is assumed that a (512(n + 1))-word array

atab[t][]] 0O<i<51,0<j<n)
has been set up as follows:

atab[0][1:=0;
fori:=1to 511 do
{Let g be the unique integer satisfying
intlg - d/T)=i—1 and int((g+ 1) -d/T)=1i;
atab[i][1+= gd}

where, as described above, atab[i][] represents the
number stored in the n + 1 words

atab[i1[0], atab[i1[1], ..., atab[i][n]

Note that, for each i, g =int(T - i/d); the description
above is used to emphas1se that no divisions are involved
in the computation of atab.

The individual computation now proceeds as follows:

fori:==dn—1toOstep —1do
{J+= ine(k[1/2% - T));
k[J:=k[1 —2% - atab[jI[1}

To complete the process it may be necessary to subtract
either d or 2d from the final k in order to ensure that it is
less than T, which is sufficient for intermediate results in
modular exponentiation. At most one further subtraction
of d will ensure that the result is less than d.

Note that the two operations in each iteration of the
algorithm are both very simple. The first, although
apparently involving a division and an exponentiation,
actually merely involves examining the two most signifi-
cant bytes of k.

Finally note

atab[][],
4T > 1/2

and hence

that during the computation of

g < 1022 for every i

d[n — 1]) can be
stored in at most n + 1 32-bit words. This explains why
atab[][] has the dimensions allocated to it.

2.3 Proof of correctness
We need to establish three points in order to prove the
correctness of the algorithm. These points are as follows:

167

"~ S1 The result of the subtraction step in the algorithm
will always be posxtlve

82 The value of j in the algorithm will always be at
most 511.

S3 The final result is congruent to the or1g1nal value
of k (modulo d). In addition, the final value needs at most
2d subtracted from it in order to obtain a result lying in
the range O to T — 1.

Before giving proofs for these three statements we first
estabhsh some inequalities. By definition

atab[j1[1= gd

wheére :
in(gd/T) =j — 1 and int(g + 1)d/T) =
Hehcev ‘
gd/T <] (g+ Dd/T
Therefore we have
. atab[;][J<Tj<atab[jlIL]+d)
In addltlon, by definition we know that
T/2 d<T ')

We can now glve proofs for S1, S2 and S3.

Proof of S1: We need to prove that the result of the
program step

k[1:=k[1—2% - atab[j1[]

will always be positive. If we denote the result of the step
by k’, then, by eqn. 1:

k —k' < 28Tj.
By the ﬁrevious program step
J = int(k/2%T)) < k/(2%T)
Hence
k—k <k,
ie. k>0

Proof of S2: Now j is defined by the progfam step

j=int(k[/2% - T)

We first consider the maximum value of k in this expres-
sion. As above, if we denote the result of the program
step

k[1:=k[1 —2% - atab[1[]
by k', then, by eqn. 1:
k—k = 28(Tj — d)
By the previous program step’,;y
j=int(k/2¥T)) > k/(2%'T) — 1
Hence
k—k' >k — 28T — 28,
ie. ‘ :
kK <2%d+ T) < 28*1T (by eqn. 2)

This gives us an upper bound on the value of k in the
expression for j (noting that the value of i in the bound is
one more than the value of i in the expression for j).
Hence

j=int(k/(2%'T)) <
168

k/(28iT) < 28(i+ n+1 T/(zSiT)

ie.
j<2°=512

. Proof of §3: 1t is straightforward to see that the final k is

congruent. to the original one modulo d, since at each
step the value of k is modified by the subtraction of a
multiple of d. Using the above argument we see that the
final k satisfies the bound .

k< 28*1T (for i = 0)

i.e. the final k is less than 2T. By eqn. 2 at most 2d will
need to be subtracted from the final k to achieve a value
bounded above by T. This completes the proof of cor-
rectness.

24 Complexity ana/ySIS

There are three main elements to an analysis of complex-
ity for-Algorithm A: the space required for the tables, the
time required to compute the tables, and the time taken
to perform one iteration of the algorithm. We cons1der
these aspects in turn.

2.4.1 Space -fa‘r tables: As we discussed above, the tables
for Algorithm A4 require a total of 2048(n + 1) bytes.

2:4.2 Computation time for. tables: Suppose that the
time taken to add together two 32-bit words. is h.
Suppose also that the time taken to compare two 32-bit
words is e (we use this notation throughout). Smce we
observed that

g < 1022 for every i

the computation of the table reﬁuires at most
1021(n + 1) word additions.

Similarly, generating the table requires at most
512 word comparisons.

This is because

- atab[i + 1] — atab[l]

is always elther d or 2d, and to decide’ whlch requ1res at
most one comparison of the most significant word.

Hence the total time required to generate the tables is
bounded above by approximately

2°Qn + Dh + e).

2.4.3 Computation time for algorithm: Each step of the
algorithm requires a single ‘long’ subtraction, i.e. (n + 1)
word subtractions. Since there are 4n steps, the time com-
plexity of the algorithm is

4n(n + 1h

where it is assumed that a word subtraction takes the
same amount of time to perform as a word addition.

3 Algorithm B

3.1 Informal description
Algorithm B is concerned with modular multiplication by
a fixed value. Suppose we wish to compute

a - b(modulo‘d),

where a, b and d are all 32n-bit numbers. The algorithm
uses a precomputed table dependent on a and d. This
approach is useful since, in the context of RSA, the value
a can be made a local constant through use of the ‘left to

IEE PROCEEDINGS, Vol. 136, Pt. E, No. 3, MAY 1989

right’ form of the square and multiply algorithm. Algo-
rithm B is a generalisation of an algorithm due to Quis-
quater and Couvreur [1].

The basic idea behind the algorithm is to’ precompute
a table of multiples of a (modulo d), which can then be
added together according to the value of b. We start by
examining the contents of the pre-computed table btab.
This table contains

(32n/c)(2° — 1)n words
with entries of the form
btab[i][j], 0<i<32n/c,0<j<2° -1

and where each entry contains n words. The value of ¢
dictates the size of the table and can be chosen to be any
integer dividing 32. The choice of ¢ will be implementa-
tion dependent. During the precomputation phase
btab[i][/] is set to

2°j + 1)a (modulo d).

To explain the algorithm’s use of btab in more detail it is
perhaps simplest to examine the case ¢ = 1 first. In this
case btab[][1[] simply contains 2’ - a (modulo d) for
every i in the range 0, 1, ..., 32n — 1. The algorithm con-
sists of looking at every bit of b (in its binary
representation) in turn, and if it is 1 then adding the
appropriate multiple of a (from btab[J[][]) to the
partial product. This case of the algorithm corresponds
to procedure MODMULCO of Quisquater and
Couvreur[1].

This idea can be generalised to the case where more
than one bit of b is processed at a time. This is precisely
what the above algorithm does, and the value given to ¢
is equal to the number of bits of b processed in one iter-
ation of the algorithm., '

From this it can be seen that the larger the value
chosen for c, the faster the main part of the algorithm will
run, although the precomputation of btab[][][] will
both take longer and require more storage. For RSA
implementations, since a is only a local constant, this
means that the time and space required for the precom-
putation has to be balanced very carefully against the
time taken for the main algorithm to run.

3.2 Pseudo-code description

Input: a[] (an n-word constant)
b[] (an n-word number)
d[] (an n-word constant)

Output: p['] (an n-word number congruent to a-b
(modulo d) with “the property that
0 < p < d). Note that during the computa-
tions array p[] will need to beup ton + 1
words long,

Method: Prior to performing individual computations it
is assumed that a ((32n/c) - (2° — 1) * n)-word array

brab[{1[j1[k] 0 <i<(32n/c),
0<j<2-1,0<k<n

has been set up as follows. Note that c is initially chosen

to be a small integer dividing 32.

btab[OJ[0][1+=a[;
forji=1t02°—2do

btab[O][/1[J+= btab[O][0][] + btab[OI[j — 1) 1;
IEE PROCEEDINGS, Vol. 136, Pt. E, No. 3, MAY 1989

fori:=1to 32n/c — 1 do
{btab[[0][]+= btabli — 1][0I[]
o + btab[i — 13[2° = 21[1;
forji=1t02°—2do \‘
beab[{1[/1[1+= btab[iJ[01[] + btab[1[j — 11[1}

where all the additions take place modulo d. At any stage
this only ever involves subtracting a single multiple of d
from the sum. ,

Note that the above routine has the effect of setting

btab[1[jIL]1=2" " a - (j + 1)(modulo d)

for each i and j. The importance of the above algorithm is
that it uses only add and subtract operations, and hence
btab[J[[] can be computed quickly.

The individual computation now proceeds as follows
(where (b33, 1b324-2 =" b1bo), is the binary representa-
tion of b):

p[1=0
for i:=0to 32n/c — 1 do

{j'a (bct+c—1bci+c—2 b))y —1;
if (j = 0)p[1+=p[1 + btabli1[j1[1}

Finally, reduce p[] modulo d using iteration i =0 of
algorithm A (noting that, although its exact length will
depend on c, the final value of p[] from the above algo-
rithm will usually not contain more than 4n + 1 8-bit
bytes, since for most applications 32n/c < 512).

3.3 Proof of correctness
Suppose

Vi=(beirc-1beise-2 " ba)y — 1
Then it should be clear that
32n/c—-1

b=" 3 O+ 12 3

By examining the description above it then follows that
the value computed by algorithm B is

32njc~1

p=) btab[illy]

i=0
32njc—1

= Y 2%y, + 1) (modulo d)

=a - b (by eqn. 3).

3.4 Complexity analysis

As with algorithm A4, we give an analysis of complexity
for algorithm B in three parts: the space required for the
tables, the time required to compute the tables, and the
time taken to perform one iteration of the algorithm. We
consider these aspects in turn.

34.1 Space for tables: As we discussed above, the table
for algorithm A requires a total of

(32n/c)(2° — 1)n 32-bit words,
i.e. a total of
128n2(2° — 1)/c bytes
169

3.4.2 Computation time for tables: Using the algorithm
described above, it is straightforward to see that it takes
a total of ‘

128n%(2°~ ! — 1)/c word additions

to compute; hence the total time to compute the tables is
bounded above by .

2°*6n2h/c.

3.4.3 Computation time for algorithm: Each step of the
algorithm requires a single ‘long’ addition, ie. n word
additions. Since there are 32n/c steps, the time complexity

170 :

of the algorithm is
25n%h/c.

]

4 References

1 QUISQUATER, J.-J., and COUVREUR, C.: ‘Fast decipherment
algorithm for RSA public-key cryptosystem’, Electron. Lett., 1982, 18,
pp. 905-907

2 ZIMMERMAN, P.: ‘A proposed standard format for RSA cryp-
tosystems’, IEEE Comput. Magazine, 1986, pp. 21-34

3 KNUTH, D.E.: ‘The art of computer programming, Volume 2: Semi-
numerical algorithms’ (Addison-Wesley, USA, 1981, 2nd edition)

4 BEKER, H.J, and PIPER, F.C.: ‘Cipher systems’ (van Nostrand,
London, 1982)

IEE PROCEEDINGS, Vol. 136, Pt. E, No. 3, MAY 1989

