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The postage stamp problem requires the selection of a set of k postage stamp denominations such that sums of h (or
fewer) of these denominations can realise all the numbers 1,2,...,n for n as large as possible (given k). In this paper
we consider a natural analogue of this problem to the case where each stamp denomination is allowed to occur a
negative number of times, so long as the sum of the absolute values of the numbers of occurrences is at most h.
Interestingly, for the case h = 2, the problem considered here is also an analogue of the Golomb Ruler problem. For the
case h = 2, constructions are shown which give a lower bound on the maximum n achievable.
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1. THE POSTAGE STAMP PROBLEM AND
ITS ANALOGUE

The Postage Stamp problem has been studied for many
years under a variety of guises, and can be stated very
simply. It requires the selection, for given positive integers
h and k, of a set 4 of k positive integers, or ‘postage
stamp denominations’, such that:

(i) sums with 4 (or fewer) terms, where each term is

equal to an integer in A4, can realise all the numbers 1,2,

o1

(ii) n is as large as possible.

Clearly, 4 must have smallest element 1. We call 4 a (k,
n, h)-Postage Stamp Set, or (k,n, h)-PSS.

The problem can be informally stated as that of
choosing a set of k postage stamp denominations so that
every value between 1 and n can be achieved using at
most 4 stamps. This has given rise to the name of the
problem. A (k, n, h)-PSS with maximal n for given k and
h is called an Extremal PSS, and the value of n obtained
is denoted by n,(k).

A number of authors have studied the problem of
determining the maximum # that can be obtained for any
given pair (k, k). Tables of the best known values of » for
some small k and 4 can be found in the papers of Alter
and Barnett," Lunnon® and Mossige.!*!! The papers of
Alter and Barnett® and Mossige,'® together with section
C12 of Guy’s book,® provide a useful survey of results
and bibliography on the problem up to 1981. Other
recent work, all of which relates to the special case k =
3, includes that of Rddseth, Selmer and Rédne.!3-19-16

We now modify the definition of (k,n, h)-PSS as
follows. Choose positive integers k, 4 as before, and we
call a set 4 ={a,,a,,...,a,} a (k,n, h)-Modified Postage
Stamp Set, or (k,n, h)-MPSS, iff, for every ve{l,2,...,n}
there exists x,,x,,...,x,, where each x, is a (not
necessarily positive) integer, such that:

k
) v=2Xax;

i=1

k
(i) X |x| <h
i=1

Using our postage stamp analogy, we now allow any of
our stamp denominations to occur a negative number of
times, so long as the sum of the absolute values of the
number of occurrences of each stamp type remains at
most A.

In addition we extend other definitions in the obvious
way so that, for given k and A, we call a (k, n, h)-MPSS
having maximal n an Extremal MPSS, and this value of
n we denote by n}f(k). We also introduce some additional
notation; if 4 is a set of k positive integers {a,,a,, ..., a,}
with a; < a, < ... < q,, then let R,(A) be the set:

k k
{ a;x;: % x| < h, x, integers}
i=1 i=1
Then 4 is a (k,n, h)-MPSS iff {1,2, ..., n} is contained in
R,(A).

The problem of constructing (k,n,2)-MPSSs with
maximal 7 can also be regarded as a natural analogue of

- Golomb’s Ruler problem, a short introduction to which

can be found in Dewdney’s recent article,* and a survey
can be found in Ref. 3. This problem has been well
studied over the last few years because of its wide ranging
applications in fields such as crystallography and the
design of very large baseline radio interferometers. Note
also that the version of this problem for the case where
the differences a;—a, are computed modulo » relates
strongly to the classical problem of finding difference
sets; see for example chapter 2 of Hughes and Piper,® or
chapter 11 of Hall.®

2. CONSTRUCTING MODIFIED POSTAGE
STAMP SETS

We now consider some theoretical results concerning the
existence of MPSSs. We are primarily concerned here
with the case # = 2. We give some bounds on the value
of nf(k), of which the lower bounds are obtained by
explicit construction of corresponding MPSSs.

Even for the special case & = 2, the problem appears to
be far from simple. Certainly the problem of computing
the exact value of n}(k) is a long way from being solved,
even as far as asymptotic results are concerned, which
clearly does not hold out much hope for obtaining
explicit expressions for the value of n}(k) for general A
and k.

The fact that the problem does not appear easy is not
really surprising, since the PSS problem is also a difficult
one. As far as the value of n,(k) is concerned, as long ago
as 1937, Rohrbach'* conjectured that n,(k) = k2/4 4 0(k),
but this was subsequently disproved in 1976 by Him-
merer and Hofmeister.” More recently Mossige,' and
Mrose,'? have shown that n,(k) > 2k%/7+0(k).
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We first make some elementary observations, the
proofs of which are straightforward.
Lemma 2.1. If A ={a,,a,,...,a,} (with a,<a, < ...
<a,)is a (k,n,2)-MPSS, then
(i) A4 is a (k,m,2)-MPSS for every m < n.
(i) n < min{2a,,k*+k}.
(i) If n > (k*—k)/2 thenn > a,, and if n > (k*+k)/2
then n > 2a,.
(iv) If n > a,—1 then g, > 2a,—1, and if n > 2a,—1
then a, = 2a,— 1 iff 4 = {k k+1,...,2k—1}.
v) f n>a,—1 then a, < (k*—k+2)/2, and if n >
2a,—1 then a, < (k*+k+2)/4.
From the above result we see that n¥(k) is bounded
above by k*+ k. In fact, if A is a (k, k*+ k, 2)-MPSS then
A is in some sense perfect, since every sum, difference and
element of 4 is ‘used’ exactly once. However, it is easily
seen that such perfect MPSSs cannot exist for k > 3, and
so we actually have:

n¥(k) < k*+k.

The question that now naturally arises is: ‘How big is
ny(k)?’. The answer is by no means clear, although an
unpublished construction of Hofmeister (1983) gives the
lower bound

n¥(k) > k2/2+0(k).

Hofmeister’s construction is as follows.

Let h=2,k>2, and put x =[(k+1)/2],y = 2x+1.
Then let A4={1,2,...,x,3x+1,3x+1+1.y,...,3x+
1+(k—x—1).y}.

Itis then elementary to check that 4 is a (k, (k*+3k)/2,
2)-MPSS for every k > 2, and hence Hofmeister’s bound.

A slight modification of the above construction gives
sets with slightly larger n. Let A, k, x be as above and put
z=k—x+1. Then let

A={z,2z,...,x.z,x.z+1,x.z+2,...,x.z4+z—1}

A is then a (k, [k®/2+ 2k], 2)-MPSS.

Using a slightly more complex construction method
we now exhibit a lower bound for n¥(k) of k2/2+ 3k +2
(for sufficiently large k). Although a number of computer
searches have failed to turn up any MPSSs with larger
values of n, it would be premature to make any
conjectures about the tightness of this bound, especially
considering the history of Rohrbach’s conjecture,*
relating to a lower bound for ny(k).

Before proceeding to describe our method of con-
struction, we need some preliminary definitions.

Suppose 4 = {a,,a,,...,a,} (Where a, < a, < ... < a,) is
a (k,n,2)-MPSS, and in addition let ¢ be the largest
positive integer with the property that s.a, € 4 for every
s€{l,2,...,1}. Then A4 is said to be an Extensible (k,n, 2)-
MPSS iff:

(i) n > max{2a,,a,}, and

(1) {a,a,+1,a,+2,...,a,} is contained in Q(4),
where Q(A) is defined to be the following subset of
Ry(A):

AU{a;+s.a;:1 <i<k,1<s<#

Ufa,—s.a;:2<i<k 1<s<t.
We can now state:

Theorem 2.2. Suppose that A = {a,,a,,...,a,} is an
extensible (k,n,2)-MPSS with a, < a, <... <a,. Then
the set A* ={a,}U{a,+a,:1 <i<k} is an extensible
(k+1,n+2a,,2)-MPSS.

Proof. We consider each value of v (1 < v < n+2a,)
in turn, and show that ve R,(4*). Moreover, if a, <v<
a,+a,, then we simultaneously show that ve Q(4*), and
the result follows. We divide the proof into seven cases.

Case 1: 1 <v <a, By definition of extensible we
know that @, < n, and hence ve R,(A4). Also, since v < a,,
we know that » = a;—a, for some i,j. Hence v =
(a;+a,)—(a,+a,) e Ry(A%).

Case 2: v = a,. By definition a,€ 4*, and hence a,€
0(4*).

Case 3: a, <v < 2a,. By definition of extensible we
know that n > 2a,, and hence veR,(A4). By Lemma
2.1(iv) v < @, and hence ve Q(4). Hence either: (a) v =
a+s.a,(I1<s<t)or(b)v=a,—s.a, (1 <s<1).if(a)
then clearly veQ(4*), and if (b) then o=
(a;+a)—(s+1).a,e Q(A4*).

Case 4: v =2a,. In this case v = a,+a,e A*, i.e. ve
o(4*).

Case 5: 2a, <v < a,+a,. Let w =v—a,, and then q,
< w < a,, and hence we Q(A4). Thus either: (@) w = q, (I
Si<k),O)w=a+s.a, (1 <i<k,1<s<t),or(c)w
=a,—s.a;,2<i<k,1<s<1).If(a)theny = a;,+a,e
A*,ie.ve Q(A*). If (b) thenv = a,+ (s + 1).a,€ Q(A4*). If
(c) then v = (a;,+a,)—s.a,€ Q(4*).

Case 6. v = a, +a,. Immediately we have ve 4*, i..
ve Q(A4%).

Case 7. a,+a, <v<n+2a,. Let w=0v—2a,. Then
a,—a, <w<n. Now since w<n we know that we
Ry(A), and hence either: (a) w =a, (1 <i<k), or (b) w
=a;+a; (1<ij<k). If (a) then v=(a,+a,)+a,c
R,(A4%*), and if (b) then v = (a,+a))+(a;+a,) € Ry (A*).

|

We call A* the extension of A, and since A* is itself
extensible the whole process can be repeated any number
of times. We use this technique to establish the existence
of (k,n,2)-MPSSs having n approximately equal to
k®/2+ 3k.

Lemma 2.3. If k is an even integer, k = 2r say, and k
= 14, then

E(k) = {k,k+2} U{k+5,k+6,....k+r—1}u
tk+r+1,k+r+3}U{2k+1,2k+3,2k+4} U
{2k+r,2k+r+2}U{2k+r+4,2k+r+5,...,3k—1}

is an extensible (k, 6k —2,2)-MPSS.

Proof. The proof follows from an exhaustive, and
exhausting, case by case analysis, which there is no point
in including here. ]

Lemma 2.4. 1f k is an odd integer, k = 2r+ 1 say, and
k > 15, then

Fk) = {k,k+2} Utk +5,k+6,....k+r—1} U

tk+r+ 1L, k+r+3,k+r+4}U{2k+1,2k+3,
2k+4} U
{2k+r,2k+r+2} U{2k+r+52k+r+6,...,3k—1}

is an extensible (k, 6k —2,2)-MPSS.
Proof. Immediate from a case by case analysis. W
In addition to the above two lemmas the following are
examples of extensible (k, 6k —2,2)-MPSSs with k = a,
for k =10, 12 and 13:

k=10: {10,12,15,16,21,23,24,27,28,29}
k=12:{12,13,14,18,19,27, 28,29, 32, 33, 34, 35}
k=13: {13,14,15,19, 20,22, 29, 30, 31, 34, 36, 37, 38}.
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The following are examples of extensible (k,n,2)-
MPSSs with maximal n (given k = a,) for the remaining
values of k:

k=2n=6). {2,3}

k=3(n=10): {3,4,5
k=4(n=16): {4,6,7,9)

k=5(m=20): {578,911

k=6(m=28): {6,9,10,11,13,14}
k=7(n=32): {7,10,11,12,13,15, 16}
k=8(n=42): {8,12,14,17,18,19,21,23}
k=9(n=50): {9,10,14,17,20,21,22,24,25}
k=11(n=62): {11,12,15,17,21,24,25,27,29,30,

We now have: 313
Theorem 2.5. If k = 16, 17, 18 or k > 20, then:

n¥(k) > k2/2+ 3k +2.

Proof. Suppose that A is an extensible (k, 6k —2,2)-
MPSS having minimum element k. Then, if A4 is extended

t times (as in Theorem 2.2), we obtain an extensible
(k+1,6k—2+tk,2)-MPSS. If we let K = k+1, then:

if t =k—4 or k—2 we obtain a
(K,K?/2+3K+2,2)-MPSS, and

if t = k—3 we obtain a
(K,K?/2+3K+5/2,2)-MPSS.

Using Lemmas 2.3 and 2.4 and the list following these
lemmas the result follows.

The following result gives the best lower bound known
to the author for all other values of k.

Theorem 2.6. For 2<k <15 and k =19, n*(k) is
bounded below by the values in Table 1. For k < 8 these
appear to be the actual values of n¥(k).

Proof. MPSSs with the appropriate parameters can be
constructed from the examples given immediately above
Theorem 2.5 (hence establishing the lower bounds).
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k bound k bound k bound
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3 10 8 52 13 122
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6 11
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The fact that these bounds appear tight for k < 8
follows from computer searches.

It is interesting to note that for every value of k, at
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Certainly, some further directed computer searches
may resolve some of the obvious questions arising from
this work. It also remains interesting to see how many
theoretical results can be achieved in an area in which
they have always been thin on the ground.
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