
Comments on the security of the
SPAPA strong password
authentication protocol

Chris J. Mitchell and Siaw-Lynn Ng

Technical Report
RHUL–MA–2007–8

25 August 2007

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Abstract

The hash function based Strong Password Authentication Protocol with User
Anonymity (SPAPA) was designed to protect users against monitoring by
utilising temporary identities instead of true identities. In this letter we
show that it is vulnerable to several attacks, including two which allow an
adversary to link the activities of a user.

1 Introduction

The hash function based Strong Password Authentication Protocol with User
Anonymity (SPAPA) was proposed in [1] to provide a unilateral authentica-
tion protocol with user anonymity. However, the level of anonymity is not
specified: while in some cases it may be sufficient that a user should not
be identified, in many applications it is also desirable that the activities of
individual users should not be linked. We show that SPAPA allows a passive
attacker to link messages generated by the same user, and, contrary to the
authors’ claim, also allows such monitoring under a stolen-verifier attack. We
also describe other weaknesses in the protocol.

2 The SPAPA protocol

The SPAPA protocol works in the following environment.
A user A registers with a server S. The user has a high entropy strong

password P , and the server has a secret key x. The function h(·) is a one-way
hash function and hk(·) is a keyed hash function (i.e. a Message Authentica-
tion Code (MAC) function) with key k. We will use | to denote concatenation.
The protocol has a one-off registration phase which uses a secure channel, as
follows.

R1 User A generates a nonce N0 and sends his/her identity A, together
with h2(P ⊕N0) and h(A|N0|P) to server S.

R2 Server S stores A and T0 = h(A|N0|P) as the temporary identity (TID)
for A, and v0 = h2(P ⊕N0) as the verifier. It sends K0 = v0 ⊕ h(x|A)
to A, and A stores K0 and N0 securely in a smartcard.

If Ni is the nonce generated by the user after the ith login, we write
Ti = h(A|Ni|P) to denote the ith temporary identity and vi = h2(P ⊕ Ni)
the ith verifier.

In user A’s ith (i ≥ 1) login request,

1

A1 User A keys in the password P and his/her smartcard generates a new
nonce Ni. It then calculates

ci
1 = Ki−1 ⊕ vi−1 = h(x|A)

and a new TID Ti = h(A|Ni|P).

A2 A then sends the five values Ti−1, ci
2, ci

3, ci
4, and ci

5 to S, where

ci
2 = h(ci

1)⊕ h(P ⊕Ni−1),

ci
3 = h(ci

1)⊕ Ti,

ci
4 = h(ci

1)⊕ vi,

ci
5 = hh(x|A)(vi|Ti|h(P ⊕Ni−1)).

The smartcard then replaces Ki−1 with Ki = vi⊕h(x|A) and Ni−1 with
Ni.

A3 Upon receiving the above message from A, S looks up the database
entry indexed by Ti−1, and calculates h(x|A). It then computes w =
h2(x|A)⊕ ci

2 and checks whether h(w) matches the stored verifier vi−1.
It then retrieves Ti and vi from ci

3 and ci
4 using h2(x|A), and finally

checks the integrity of the computed values Ti, vi and h(P ⊕ Ni−1)
using the keyed hash value ci

5.

The authors claim that this protocol provides user anonymity against
stolen verifier attacks, and that future verifiers are safe even if one verifier
is known. We analyse this claim as well as other security issues in the next
section.

3 Security of SPAPA

3.1 Synchronisation issue

The description of the protocol does not cover the case where a server does
not receive the message from the user. The user updates the values Ki and
Ni without knowing whether the server has received the message. Unless this
is carefully managed, a single loss of a message could mean permanent loss
of synchronisation between user and server.

2

3.2 A man-in-the-middle attack

The protocol is subject to a man-in-the-middle attack, where an adversary
intercepts the message from the user and prevents it from getting to the
server. The adversary can then use it later to impersonate the user to the
server.

3.3 A stolen-verifier attack

Suppose an adversary E observes the ith login request {Ti−1, c
i
2, c

i
3, c

i
4, c

i
5},

and is able (by some means) to obtain the verifier vi. Then E is able to
obtain h2(x|A) from ci

4, and therefore will be able to calculate Ti from ci
3.

From this point onwards, E will be able to track the temporary identities Ti,
Ti+1, . . ., and hence will be able to monitor the activities of this particular
user. Clearly this also gives access to future verifiers. This contradicts the
claim by the authors that the scheme is secure against a stolen-verifier attack.

3.4 Linking by passive attacker

Even without a stolen verifier, a passive attacker is able to link together
authentication messages sent by the same user. To see this, we write wi for
h(P ⊕ Ni) (so that vi = h(wi)) and Xi for h(ci

1). The ith message A sends
to the server is then

{Ti−1, Xi ⊕ wi−1, Xi ⊕ Ti, Xi ⊕ h(wi), ci
5}.

Hence an interceptor can readily obtain Ti−1, wi−1 ⊕ Ti, and h(wi)⊕ Ti.
Now suppose an interceptor has intercepted three consecutive exchanges

which are suspected to originate from the same entity. The interceptor first
obtains:

Ti−1, wi−1 ⊕ Ti, and h(wi)⊕ Ti

from the first message,

Ti, wi ⊕ Ti+1, and h(wi+1)⊕ Ti+1

from the second, and

Ti+1, wi+1 ⊕ Ti+2, and h(wi+2)⊕ Ti+2

from the third.
The interceptor now uses Ti and Ti+1 (from the second and third mes-

sages) to obtain h(wi) and wi from the first and second messages. A simple

3

check will now reveal whether the three messages are linked in the way sus-
pected. Such a test could be repeated large numbers of times on sequences of
intercepted messages to generate chains of links between messages generated
by the same user. Note also that clearly this gives the interceptor a verifier
which allows him to link the activities of the user as described in the previous
section.

4 Conclusion

We have shown that the SPAPA protocol is vulnerable to several attacks,
including two attacks which allow an adversary to monitor the activities of
a user despite using a different identity at every login.

References

[1] K. Mangipudi and R. Katti, “A hash-based strong password au-
thentication protocol with user anonymity,” “International Jour-
nal of Network Security”, vol 2, no 3, pp. 205–209, May 2006
(http://isrc.nchu.edu.tw/ijns/).

4

