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GROUP DIVISIBLE DESIGNS WITH DUAL PROPERTIES

Chris Mitchell

Abstract. 

Necessary and sufficient conditions are given for a square
group divisible design to have a group divisible dual, and the
structure of such designs is examined.

1. INTRODUCTION

The study of group divisible (or simply GD) designs commenced

with the work of Bose and Connor [3] who introduced them as an

important subc~ass of the partially balanced designs with two

associate classes of Bose and Nair [4]. Much research has been done

in connection with these designs since the appearance of [3] for

a survey of known results see [6] or [10].

The purpose of this paper is to prove the following two results:

Theorem 1 If both ~ and ~* (the dual of ~) are GD, then the group

divisions of ~ and ~* form a strong tactical division of~, and

either:

(i) ~ and ~* are semi-regular group divisible, or

b=v and ~,~* are regular group divisible.

-' If ~ is a square GD design, then the following are

(ii)

Theorem 2

equivalent:

(i) Q admits a strong tactical division whose point classes form

the classes of the group division of Q.

(ii) Q* admits a A-point division with the same number of classes

as the group division of Q.

(iii) Q* is GO with the same parameters as Q.

(iv) Q* is GO.

Theorem 2 generalises a result due to Bose [2] who proved that

(iii) implies (i). Other results have been obtained giving necessary

and sufficient conditions for a square GD design ~ to have a dual

which is GD with the same parameters as £. In particular note the
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results of Connor [7] and Shrikhande and Bhagwandas [15]; for details

see Result 5 below. However, not every square GD design has a GD dual;

an example of a square semi-regular GD design with a non-GD dual

can be found in [7], and an infinite family of square regular GD

designs with non-GD duals can be found in the recent paper, [8],

of Jungnickel and Vedder.

The results of this paper are contained in the author's thesis

for the degree of Doctor of Philosophy at the University of London

[9] written at Westfield College under the supervision of ProfessorF.C.Piper. 

Some of the work in this paper was done while the author

was studying at the University of California at Los Angeles under

th supervision of Professor B. Rothschild.

2. DEFINITIO~~ AND PRELIMINARY RESULTS

For definitions and results on t-designs see, for instance,

[1] or [5]. Note that the definiton of t-design used in this paper

excludes the possibility of repeated blocks or points, i.e. no

two blocks (or points) are incident with the same set of points

(or blocks).

It is straightforward to show that bk = vr for any 1-design,

and hence b=v if and only if r=k. If, for a 1-design!?, b=v,then!? 

is said to be square. Also, if!? is a 1-design, then!?*

(the ~ of!? obtained from ~ by interchanging the roles of points

and blocks) is also a 1-design. We will always assume that!? is a

1-design with 1<k<v-1 (and hence 1<r<b-1).

An incidence matrix A = (a i ') for D is a v by b matrix with itsJ -

rows indexed by the points of !? and its columns indexed by the

blocks of D such that a" = 1 if the ith point is incident with the

-1.J

j th block and a. , = 0 otherwise.

1.J
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The connection number of two points of ~ is the number of blocks

incident with them both, and dually, the intersection number of two

blocks is the number of points incident with them both. (If x,y are

two blocks of~, then we will often write Ixnyl for the intersection

number of x and y.)

A point division of P. is a partition !?1' ..., ~ (1<d<v) of the

points of p., such that the connection number of two distinct points

from classes P. and P. depends only on the choice of i and j and
-J. -J

is denoted by A... A A-noint division is a point division such that
J.J ~ A.. =A for every i with IP.I > 1 (i.e. for every i with A.. defined)

J.J. -J. J.J.

A group division of Q is a A-point division having an associated

constant A' such that Aij =A' for every i,j (1# j).

We also assume that A FA' for a group division or else ~ is a

2-design (or a "B.I.B.D."). It can easily be shown that a group

division must have a related constant 1,(1<1<v), such that IP.I =1
-J.

for every i. Since a group division of a 1-design (if it exists) is

clearly unique, a 1-design admitting a group division is called

group divisible (or just GD). Also, we will henceforth assume that

A' > 0 for a GD design (since, if A' = 0, then ~ is the disjoint union

of d 2-(1,k,A) designs).

If ~ is GD and A is an incidence matrix for ~ "~ssociated with"

the group division (i.e. the first 1 rows of A correspond to the

points of ~1' the next 1 rows to ~2' etc.) then:
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'-- 1-7~ 1-.

1

1

T
1

1

AAT =

So, by inspection, if i is the all +1 row vector

+ u-1 -+- + v-u-1-+-
e = (00 ...0 1 -100 ...0) and
-u

+- (w-1)1'" +- 1... +- 1

=(00...011...1-1-1...~w
+ +(d-w-1) 1+

-1 0 0 ...0): then:

i(AAT,

,

= «v-l)~'+(1-1)A+r)i

~u (AA T: = (r-A)e
-U

(1 suSv-11 u *tl for any t)

fw (AA T: = (r+ (1-1)A -lA')f
-w

1 $w$d-1)

i(AAT) = rki.But lA = kl and lAT = rl and so

Hence:

If D and A are as above then:

(i)

Iii)

(iii)

v = dl .

(v-l)A' + (l-1)A =r(k-1).

The eigenvalues of AAT are: (r-A), (rk-vA') and rk with

multiplicities v-d, d-1 and 1 respectively.

T v-d d-1IAA 1= rk(r-A) (rk-vA') .iv)
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From Result 1, since AAT is positive semi~definite, we have:

Result 2 (Bose and Connor, [3]) If Q is GD then rk~vA'.

By definition of design, r > A, and so if Q is GD, then rk > VA' if

and only if AAT is non-singular. This led Bose and Connor (in [3])

to classify GD designs as follows:

Result 3 If D is GD then either:-

(i)

rk = vA' and b?c rank A = rank AA T = v-d+1 (in which case ~ is

said to be Semi-regular GD, or ~~), or
rk > VA' and b?c rank A = rank AA T = V (in this case ~ is said

to be Regular GO, or~).

In fact Bose and Connor's definiton of GO designs allows two

points to be incident with the same set of blocks, and hence allows

the case r=A. Such designs they call Singular GO (SGO) designs.

The definition used here does not permit SGO designs, and in any

it can be shown that an SGD design consists of a 2-design

with each point repeated 1 times

We now consider the cases when the bounds of Result 3 are reached.

Result 4 (Roy and Laha [ 11, 12]) If ~ is SRGD then b = v-d+1 if and

only if ~. is a 2-design. In this case~. is a 2-(b,r,k-r+A) design.

Square RGD designs whose duals are not RGD with the same parameters

as ~ seem rare; in fact the only such designs known to the athor are

those given in [8], Theorem 1.6. In this connection we also have:

Result 5 (Connor [7], Shrikhande and Bhagwandas [15])

Let ~ be a square GD design. If one of the conditions below is

satisfied then~. is GD with the same parameters as~.

(i) ~ is RGD and (k2-vA', A-A') = 1.

Iii) IA-A'I = 1.

In this paper we give some further necessary and sufficient

conditions for a square GO design to have a GO dual.
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If~. admits a point division then we will denote the division

by B1 ,...,B and we will write the intersection numbers of D as Pi ..
--c -J

Furthermore, if ~. is GD t~en we will set P = Pii and p' = Pij (i ~ j).

A tactical decomposition of ~ is a partition of the points and

blocks of ~ into classes ~1'...'~ and ~1'...'~ respectively

(1 <d <v, 1 <c <b), such that:

(i) The number of points of P. incident with a block of B. depends
-J. -)

only on i and j and is denoted by 6.., and, dually
J.)

(ii) The number of blocks of B. incident with a point of P. is
-) -J.

a constant y.. depending only on the choice of classes.
J.)

A tactical division of Q is a tactical decomposition whose point

classes form a A-point division of Q. We then have:

Result 6 (Beker, [1]) Suppose T(Q) is a tactical division of Q

with c block classes and d point classes. Then:

b+d?;v+c.

(ii) The following are equivalent:

(a) b + d = v + c (and T (g) is said to be strong).

(b) The block classes of T(g) form a point division of g*

(c) Two distinct blocks from the same block class of T(g)

always have intersection number k -r + A

To prove our theorems we also require the following results on

SRGD designs:

Result 7 (Bose and Connor, [3]) If Q is GD then Q is SRGD if and

only if every block is incident with precisely kid points of each

point class.

Result 8 (Saraf, [13]) If £ is SRGD and x,y are two distinct blocks

of £, then Ixnyl =k-r+A if and only if Ixnzl= Iynz! for every block

z (z#x or y).
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Finally, we state a result on graphs.

An adjacency matrix T = (t. oj of a graph G on v vertices is a v by v
1.J

matrix with tij =1 if the ith and jth vertices are adjacent and 0otherwise. 

Then G is regular if and only if ;T=e j where e is the&. 0 0

valency of G.

Result 9 (see, for instance, [5]) Let T be an adjacency matrix

of a regular graph G with valency 80. If TliL has only two eigen-

values 8, and 82 (8, >82) then G is a r(c,m) if and only if 80=8"

where r(c,m) is the disjoint union of c complete graphs on m vertices

each. In this case 82 = -, and has multiplicity v -m.

3.

THE MAIN RESULTS

To prove Theorems 1 and 2 we first require:

Lemma 1 Suppose ~1'...'~ is a A-point division of Q and ~1'...'~

is a p-point division of Q* with p = k -r + A. Label the points of ~i:

P. 1 ' P. 2 ,...,P' l and the blocks of B,: x' 1 ' x' 2 '...'x, , (IP i l =
1. 1. 1.. -J J J Jm,-

1. J
1. and IB,! =m, throughout). Suppose also that there are B, ( . t)1. -J J 1. J

PO ints of p, incident with block X' t of B. and Y ( . ) .blocks of B.
-1. J -J 1.S J -J

incident with point Pis of ~i. (Note that if ~1'...'~ and ~1'...'~

form a tactical decomposition of 0, l3i( ' t) =13" and Y ( ' ) '
-] J.] J.s ]

for every t and s). Then, for every choice of p, and X' t :

J.s ]

= Y ij

d

u:,AuiI3U(jt)

Proof Let A be an incidence matrix for!? "associated with"

the point divisions of!? and !?*, and consider the matrix identity

A (ATA) = (AAT)A.

c
L p. Y

w=1 JW (is)w.
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i-1 j-l
The entry in row L 1 +s and column L

Ww=l w=l
m + t of A (ATA) equals

w

The corresponding entry in (AAT)A+ (k- p)6.
c
L P .y

w=1 WJ (is)w

d 1 if P. is incident with X' t--J.S J }e<iUals U:1AUi6U(jt)+(r A)cS,where cS-{Ootherwise .

Using the fact that p = k -r + A, the lemma follows. []

We can now prove the two main theorems.

Theorem 1 If Q and Q* are GO, then the group divisions of Q and Q*

form a strong tactical division of Q, and either:

(i) 0,0* are SRGO; p =k-r+A, pi =A'v/b, B.. =k/d and y.. =r/c
--J.] J.]

for every i,j; or

(ii) b = v; 0,0* are RGO with the same parameters and B. .= y. .
--J.] J.]

for every i,j.

~ (i) Suppose Q is SRGO. Then, by Result 8, p = k-r+A.

Using Result 7 and the notation of Lemma 1 we have:

A .=A' (uti), A..=A,
U1. 1.1. ~U(jt)=k/d, pwj=pl \W ~ j) and

p , , = p = k -r + ),. So, by Lemma 1:
))

c
k«d -1»),' +)')/d=p' I: Y ( '

)w=1 J.5 W

+ 

(p -p') Y(is)j.

c
Clearly ~ Y ( ' ) = r and so Y ( ' ) ' is a constant independentw=1 J.s W J.s J

of i and s; hence Y ( ' ) ' =r/c for every i,s and j. So, by Result 7,
J.S JQ* 

is SRGD and the group divisions form a tactical division which is

strong by Result 6. Finally pi =A'v/b by Result 3(i).

(ii) If Q is RGD then Q* is RGD by (i) above. Hence, by Result

3(ii),b=v and r=k.

Let A be an incidence matrix for £ associated with the group

divisions £ and £*. For any real matrix X it is clear that XXT and

XTX have the same non zero eigenvalues with the same multiplicities.
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Hence, from Result 1 (iii), ATA has eigenvalues: k2, k-A and

k2 -vA' with multiplicities 1, v -d and d -1. Note also that k2 clearly

has as eigenvector i (or any multiple thereof).

We now define a graph G having as vertices the blocks of Q and

having two vertices adjacent if and only if the corresponding blocks

have intersection number p. Now since Q* is GO, G is a r (c,m),

andT=((k-p')I+P'J-ATA)/(P' -p) where T is an adjacency matrix

for G.
Since r,k > 1 and A' # O,k-A and k2 -VA I are distinct from k2, and

so their corresponding eigenvectors for ATA are orthogonal toJL.

Hence T has eigenvalues: ((v-1)p' -k(k-1»/(p' -p) the valency,

(A-p')/(p' -p) and ((VA' -p')-k(k-1»'/(p' -p) with multiplicities 1,

v-d and d-1 resprectively.

Thus, since G is a r(c,m), Result 9 gives either A -P' = (v-1)p'-k(k-1)

or vA' -p' = (v -1) p' and the group division of !?* has v -d + 1 or

d classes respectively. But 1 <d<v, d divides v and the number of

classes divides v, and so the group division of Q* cannot have

v-d+1 classes, i.e. we must have A' =p', and, again by Result 9,

(A -p')/(p' -p) =-1 and so p = A.

So if!? is RGD then!?* is RGD with the same parameters as Q.

Finally we must show that the group divisions of Q and Q* form

tactical divisions of D. Using Lemma 1 we have (for every P. and XOt ):
-J.S J

d c
1:13 ( ' t) + ()._).I)I3' ( ' t) =).' 1:Y ( , )u=1 U J J. J w=1 J.S w + (A -AI)Y(iS)j

d c
Hence, since ~ a ( ' t) = ~ Y C ' ) = k,

u=1 u J w=1 1.S W

a, C ' t) = Y ( ' ) ' for every choice of p, and X' t O So the group1. J 1.S J 1.S J

divisions form a tactical division which is strong by Result 6, and

a, , = Y" for every i, j 0 C
1.J 1.1
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Theorem 2valent:

(i)

If g is a square GD design, then the following are equi-

(ii)(iii)

(iv)

~ admits a strong tactical division whose point classes form

the classes of the group division of ~:

~* admits a A-point division with c =d.

~* is GD with the same parameters as~.

D* is GD.

~ (iii) -(iv) is trivial.

(iv) -(i) is immediate by Theorem 1.

(i) -(ii) follows by Result 6.

(ii) -(iii). By a similar argument to that used to obtain

Result 1 (ii) we have:

d
k (k -1) = 1: m. p. .+ (m. -1»), for every i.

. 1 ] J.] J.
]=

j#i

So, summing both sides over all blocks of Q we obtain:

d d d 2
I: I: m.m.p.. =vk(k-1)+vA I: m.. 1 . 1 ]. ) ]. ) . 1 ].].= )= ].=

j~i d
= vIA +v2A, -vIA' -A I: m.2 (using Result 1 (ii».. 1 ].].=

Let A be an incidence matrix for Q associated with the group

division of Q and the point division of Q*, and consider the matrix

identity (ATA)2 = AT(AAT)A. Computing the diagonal entries of ATAATA

in two ways (as in Lemma 1 above) and then summing both sides over

all blocks of Q we arrive at the identity:

d d 2 2 2 '2 2 2 d 2
I: I: m. m. p.. = v A' -vIA + vIA -A I: m. .

i=1 j=1 ]. ) ].) i=1 ].

j~i

Combining the above two identities we obtain:

d
1: m.2)().:").1)2.. 1 J.

J.=

(1 )
d d 2
r rm.m.(A'-p..) = (vi-

i=1 j=1 J. ] J.]

j~i
L.B.S. ~ 0 and so vi ~

d
1: m :

1=1 1
2
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d 2
Hence vi = r m.

. 1 J.
J.=

Then, substituting in (1) above, we obtain A' =Pij for every

1,j (i,#j) and the result follows. D

Remark The chief significance of this theorem is that (ii) implies

(iv) implies (iii). It generalises the work of Bose [2] who showed

that (iii) implies (i).

4. CONCLUDING REMARKS

It is clear from the results above that the restriction that the

dual of a GD design be GD places powerful constraints on the structure

of such a design. As we noted above, square RGD designs whose duals

are not also GD seem rare. However, apart from Result 5 above (and

a result implicit in [14] stating that a square GD design having A'= 1

must have a GD dual), no results are known giving parameter sets for

which such a design cannot exist.

Much work clearly remains to be done on this topic
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