
Key Recovery Scheme Interoperability –
a protocol for mechanism negotiation

Konstantinos Rantos and Chris J. Mitchell

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK.
{K.Rantos, C.Mitchell}@rhul.ac.uk

Abstract. This paper investigates interoperability problems arising from
the use of dissimilar key recovery mechanisms in encrypted communi-
cations. The components that can cause interoperability problems are
identified and a protocol is proposed where two communicating entities
can negotiate the key recovery mechanism(s) to be used. The ultimate
goal is to provide the entities a means to agree either on a mutually
acceptable KRM or on different, yet interoperable, mechanisms of their
choice.

Keywords:Key recovery, interoperability, negotiation protocol

1 Introduction

As business increases its use of encryption for data confidentiality, the threats
arising from the lack of access to decryption keys grow [2]. Although transient
keys typically should not be retained, there is a potential need to access these
keys during their lifetime, i.e. during the communication session (or afterwards
if the company logs any communications). Corporations might want to access
encrypted communications to check for malicious software or to track leakage of
sensitive information.

Key recovery mechanisms (KRMs) address this problem [3, 10] by provid-
ing the means to recover decryption keys. They can be divided into two types:
key escrow and key encapsulation mechanisms. A key escrow mechanism, [8], is
a method of key recovery (KR) where the secret or private keys, key parts or
key-related information are stored by one or more key escrow agents. In a key en-
capsulation mechanism, keys, key parts, or key-related information are enclosed
in a KR block, which is typically attached to the data and encrypted specifi-
cally for the key recovery agent (KRA). Here the terms key escrow agent and
key recovery agent are considered synonymous, and refer to the trusted entity
which responds to key recovery requests and potentially holds users’ key-related
material.

The variety of KRMs so far proposed, in conjunction with the lack of a stan-
dard for KRMs, means that interoperability problems are likely to arise from
the use of dissimilar KRMs in encrypted communications [11]. Interoperability,



2 K. Rantos and C. J. Mitchell

as in [5], means the ability of entity A, using KRM KRMA, to establish a KR-
enabled cryptographic association with entity B, using KRM KRMB . Entities
deploying dissimilar KRMs may not know whether the remote party can deal
with their KRM’s demands. This may force them to avoid key recovery, with
associated increased risks. Note that, even if KRMs were standardised, interop-
erability problems may still arise; standards tend to provide a variety of sound
but not necessarily interoperable mechanisms.

This paper addresses these interoperability problems. The components that
can cause interoperability problems are identified and a protocol is proposed
that, to a great extent, overcomes the interoperability problems. The protocol
offers communicating parties the ability to agree either on a mutually accept-
able KRM or on different, yet interoperable, mechanisms for their encrypted
communications.

2 Key recovery enabled communications

In the context of communications between entities A and B, we give two scenarios
where KRM use can affect the establishment of a cryptographic association.

1. Entities A and B make use of KRMs KRMA and KRMB respectively, which
might be identical, compatible or dissimilar mechanisms. In the case of iden-
tical or compatible mechanisms the two entities are not expected to face
any problems. Problems, however, might arise if the two entities make use
of dissimilar mechanisms. They are unlikely to be able to establish a secure
communication while using their respective KRMs, as this would typically
demand each entity to fulfil the requirements of the peer’s KRM.

2. Entity A uses KRMA while B does not use KR. The issues that arise here
are whether B will be able to cope with KRMA’s needs, and whether A will
be able to generate valid KR information. For the two entities to be able to
communicate, assuming that A manages to generate valid KR information,
B should at least be aware that A makes use of a KRM. This is important
as B should not discard incoming traffic because of unrecognised KR fields
that B cannot interpret. Another potential problem is whether A’s policy
will permit the acceptance of incoming traffic that does not make use of KR.
If A operates within a corporate environment this requirement is likely to
be crucial, as the company might want to check incoming data for malicious
software before they reach their destination.

Communicating entities wanting KR functionality for encrypted communi-
cations without the above problems must use interoperable KRMs. Also, any
deployed cryptographic mechanisms with embedded KR functionality should be
compatible with cryptographic products not using KR. These requirements will
ensure that neither of the above scenarios will prevent the establishment of a
secure session.



Lecture Notes in Computer Science 3

3 Factors that can affect interoperability

Many KRMs, especially key escrow mechanisms, demand the use of a specific
mechanism for session key generation, and as such they can be considered as
part of the key establishment protocol. This restriction is a cause of KRM in-
teroperability problems. A KRM with this property demands compatibility of
the underlying key establishment protocols, a requirement that is not always
fulfilled. Key escrow mechanisms suffer more from this problem, as most require
the use of a specific key establishment protocol. By contrast, key encapsulation
schemes appear to be more adaptable in this respect, since they simply wrap
the generated data encryption key under the KRA’s public encryption key (and
hence potentially work with any key establishment protocol).

Flexibility of key encapsulation mechanisms with respect to the underlying
key establishment protocols does not always rule out interoperability problems.
Interoperability very much depends on what additional requirements exist. For
example, problems arise if the recipient of encrypted data needs to validate KR
information, or the receiver relies on the sender to generate KR information.
These needs will typically demand interaction between the two parties dur-
ing KR information generation/verification. If either parties’ mechanism can-
not meet the peer’s demands, interoperability problems are likely to arise. This
problem is not restricted to key encapsulation schemes. In the case of key escrow
mechanisms, a requirement for participation of both entities in generating KR
information will have the same effect. We can therefore divide KRMs into two
classes, depending on their communications requirements during KR information
generation/verification.

1. KRMs where each entity generates KR information for its own use only,
without peer assistance. If neither party requires verification of the peer’s
KR information prior to decryption, interoperability issues become of minor
importance and the parties will be able to use their respective KRMs.

2. KRMs that require interaction between the two entities for the genera-
tion/verification of KR information. Interaction might be needed in the fol-
lowing cases.
– Exchange of data is required for KR information generation.
– The sender generates KR information both for his own and the peer’s

needs. This is particularly relevant to single-message communications.
– Either party wishes, e.g. for policy reasons, to verify the KR information

generated by the peer.
In situations like these interoperability is an issue that must be dealt with;
otherwise, it is likely to lead to a failure to establish secure communications.

In summary, the two factors that are likely to affect the interoperability of
KRMs in encrypted communication sessions are:

1. the KRMs’ dependence on the underlying key establishment protocol, and
2. the interaction requirements between the communicating parties for the gen-

eration and/or verification of KR information.



4 K. Rantos and C. J. Mitchell

4 Interoperable mechanisms

Based on the above analysis, a mechanism which is neither dependent on the
underlying key establishment protocol nor needs any interaction with the peer for
generation or verification of KR information, will always be interoperable with a
KRM with the same requirements. The two mechanisms can work independently
regardless of the underlying key establishment protocol. A mechanism with these
requirements can also inter-operate with one that is dependent on an underlying
key establishment protocol which both entities can deal with, as long as it does
not require interaction with the peer for KR information generation/verification.

Interoperability problems are likely to arise in the following cases (we as-
sume that the communicating parties can deal with all possible underlying key
establishment protocols):

1. Both KRMs use specific key establishment mechanisms regardless of inter-
action requirements. In this case the interoperability of the KRMs depends
on the compatibility of the underlying cryptographic mechanisms.

2. At least one KRM demands peer participation in KR information gener-
ation/verification. For example, if the policy demands that the KR infor-
mation for the receiver should be generated by the sender, then the sender
must be able to handle the receiver’s mechanism. Otherwise, it is likely that
establishment of secure communications will fail.

The chances of interoperability problems are therefore considerable, and a so-
lution is needed. However, due to the significant differences in the characteristics
of existing KRMs it is unlikely that a single model, such as the one proposed
by the Key Recovery Alliance in [5] (see also [11]), can apply to all of them.
This latter model mainly addresses problems arising from the transmission of
KR information in proprietary formats, and suggests as a solution the use of
a wrapper, namely the “Common Key Recovery Block”. However, as described
in [9], it fails to achieve one of its main objectives, which is to offer the ability
for validation of KR information by the peer, and does not deal with the situa-
tion where KR information cannot be generated because of the use of dissimilar
mechanisms.

A different approach is described in this paper, which requires the entities to
be able to deal with more than one KRM. This enables some of the difficulties
described above to be avoided.

5 A KRM negotiation protocol

We now describe a protocol designed to enable two communicating parties to
negotiate the KRM to be used in an encrypted communication session. Its main
objective is to deal with situations where the parties wish to make use of different,
non-interoperable, KRMs.

A similar protocol specifically designed to allow the negotiation of KRMs us-
ing the Internet Security Association and Key Management Protocol (ISAKMP)



Lecture Notes in Computer Science 5

[7] is described in [1]. This model, however, adopts the mechanism described in
[5] for the transmission of KR information, which, as mentioned in the previous
section, has been shown to have problems. A more generalised model is described
here that considers the different requirements of various mechanisms and the ad-
ditional requirements that might arise regarding the exchange of cryptographic
certificates. Moreover, the proposed protocol can be used to provide key recovery
functionality in the application layer, in contrast to the mechanism proposed by
the Key Recovery Alliance which targets the IP layer.

Note that in the protocol description we refer to the two parties as ‘Client’
and ‘Server’; this is so as to follow the client-server model terminology as closely
as possible.

5.1 The proposed scheme

The protocol consists of the following steps (messages in Small Caps are op-
tional; more detailed descriptions of the exchanged messages are given in the
next section).

Client Server
ClientHello −−−−−−−−→

ServerHello
Certificate

CertificateRequest

←−−−−−−−− ServerHelloDone
Certificate

KRParameters

Finished −−−−−−−−→
←−−−−−−−− Finished

The client first sends the ClientHello message, to which the server responds
with the ServerHello. With these two messages the two entities exchange the
parameters necessary for KRM negotiation. After the ServerHello (if required
by the selected KRM(s)) the server sends the Certificate message containing the
appropriate certificates, requests client certificates with the CertificateRequest,
and, finally, sends the ServerHelloDone message. The client responds with the
optional Certificate message, containing the certificates specified in the Cer-
tificateRequest, the optional KRParameters message, containing any additional
information required by the selected KRMs, and, finally, the Finished message.
The server verifies the received Finished message and, if successful, responds with
a similar Finished message. On receipt, the client verifies it and, if successful,
the negotiation terminates successfully.

5.2 Exchanged messages

In the following sections the exchanged messages are described in detail.



6 K. Rantos and C. J. Mitchell

Client Hello The client, as previously mentioned, initiates the protocol by
sending the first message of the negotiation protocol (ClientHello). The Clien-
tHello contains a list of KRMs (from a complete list of mechanisms the protocol
supports) that the client is willing to use, in decreasing order of preference. A
default mechanism that all parties are assumed to be able to use can be included
in the list.

With the ClientHello the client must also inform the server whether he wants
to resume a previous session by including the identifier in the appropriate field.
If this field is empty a new session id should be assigned by the server.

Server Hello If the client does not request the resumption of a previous session,
or if the server wants to initiate a new one, the server must assign a new session
id, which will be sent with the ServerHello message. Otherwise, the server will
respond with the session id included in the ClientHello and proceed with the
Finished message.

If the server initiates a new session, he indicates the mechanism that he
wants the client to use, and the mechanism that the server will use. The two
mechanisms, if not identical, must be interoperable. For this purpose, a list of all
possible matches of interoperable mechanisms has to be kept by both entities.
If an acceptable match is not found in the list, the server can either terminate
the negotiation protocol unsuccessfully, or choose the default mechanism if this
is in the list sent by the client. Otherwise the server drops the session.

If the selection of the mechanism for both entities is a KRM that can itself
handle the exchange of certificates and related KR parameters, the two parties
can terminate the negotiation protocol and leave this KRM to take charge. To
achieve this the server will send a Finish message (after the ServerHello) to
indicate that control is now to be passed to the negotiated KRM(s).

Finally, within the ServerHello the server also includes the KRParameters
field, which carries any additional information that the client has to possess to
be able to deal with the server’s KRM.

Certificate and KRM related information exchange Depending on the
selection of the KRM, and if the server has not sent a Finish message, the server
proceeds with the Certificate message. This message is optional and contains the
required certificates (for the chosen mechanisms) for the generation and/or ver-
ification of KR information. Following that, and depending on the requirements
of the chosen KRM(s), the server can also send a request for the correspond-
ing client’s certificates using the CertificateRequest. The purpose of the Cer-
tificateRequest is to give the client a list of specific types of certificates needed
by the server, and a list of certification authorities trusted by the server. Af-
ter the CertificateRequest the server sends the ServerHelloDone message, which
indicates that the server has completed his Hello messages.

On receipt of the ServerHelloDone, if the client has received a CertificateRequest
he responds with his Certificate message, which contains the requested certifi-
cates, assuming that he is in possession of the appropriate ones. Further, the



Lecture Notes in Computer Science 7

client sends in the optional KRParameters message any additional information
required by the selected for the client KRM. Note that the corresponding KR-
Parameters for the server’s KRM is sent as part of the ServerHello message.

Finish messages If the client is satisfied with the current selection of mecha-
nisms he sends the Finish message, which indicates that the client is willing to
proceed with the current selection of mechanisms. Subsequently, the client waits
for the corresponding server’s Finish message, whose receipt indicates successful
execution of the protocol.

5.3 Protecting the integrity of the Hello messages

After the execution of the above protocol the two entities are not sure whether
any of the exchanged messages have been altered during transmission by an ad-
versary, as the specified protocol includes no proper integrity checks. Moreover,
neither of the communicating parties authenticates the other. Assuming, how-
ever, that the KRMs that can be negotiated are sound, the protocol does not
introduce any vulnerabilities to the secrecy of the session key. The only attack
that an adversary can mount against the protocol is to alter the Hello messages
exchanged between the two entities in an attempt to downgrade the negotiated
KRM(s) to one(s) that the attacker regards as weaker. Such an attack will only
force the two entities to make use of less favourable mechanisms.

To avoid such problems we propose enhancing the previously proposed pro-
tocol. These enhancements provide the following security services.

– Integrity of the exchanged messages.
– Assurance that the Hello messages exchanged are not a replay from a pre-

vious session.

Additionally, the mechanism provides mutual authentication of the commu-
nicating parties. Note, however, that mutual authentication is not a requirement
for the negotiation protocol. It is a property derived from the use of digital sig-
natures. The modifications proposed are as follows.

– The client generates a random value randC, which he sends to the server
with the ClientHello message.

– The server generates a random value randS, which he sends to the client
with the ServerHello message.

– The client’s Finish message becomes

SC(ClientHello ‖ ServerHello ‖ randC ‖ randS)

and the server’s Finish message becomes

SS(ServerHello ‖ ClientHello ‖ randS ‖ randC)

where SU (M) is U ’s signature on data M and “‖” denotes concatenation.



8 K. Rantos and C. J. Mitchell

The rest of the messages remain as previously defined. On receipt of the re-
spective Finish messages the two entities check the signatures and if either of the
two verification checks fails the protocol terminates unsuccessfully (this indicates
that at least one of the ClientHello, ServerHello might have been altered during
transmission). The modified protocol deals with the threat of modification of
the exchanged Hello messages by an adversary. The generated random values
prevent against replay attacks, i.e. where an adversary uses old exchanged mes-
sages to subvert the protocol. The cost of this countermeasure, however, is the
introduction of signatures which have to be supported by an appropriate public
key infrastructure. In practice the two variants could co-exist, and an extra field
in the Hello messages could be used to indicate which variants of the protocol
are supported.

6 Properties and Discussion

The proposed protocol offers the communicating parties a means of negotiating
the KRMs to be used for their encrypted communications. Given that this ne-
gotiation will affect the selection of the key establishment protocol, execution of
the proposed protocol must take place before the establishment of any session
keys. It might also be the case that the two entities are obliged to use a specific
key establishment protocol. This will simply restrict the number of mechanisms
that the two entities will be able to negotiate.

The negotiating entities will be able to choose different KRMs as long as
there are no conflicts between the underlying key establishment mechanisms.
Therefore, the choice of the key recovery mechanism(s) will only be affected
by the compatibility of the underlying key establishment protocols. If these are
compatible, the two parties will be able to use the negotiated KRMs, overcom-
ing efficiently any interoperability problems that the two parties would have
otherwise faced.

Finally, note that in order to achieve the degree of agreement needed, the
KRM negotiation process and the KRMs to be negotiated need to be subject of
a standardisation process of some type (e.g. via the IETF). This standard will
need to include agreed identifiers for a large set of KRMs.

7 Conclusions

The introduction of a large number of KRMs and their use in encrypted com-
munications is likely to lead to interoperability problems between KR-enabled
encryption products. In this paper the factors that can cause interoperability
problems have been identified. Following a different approach to the single model
solution proposed by the Key Recovery Alliance, a protocol has been proposed
that gives communicating entities the means to negotiate the KRMs to be used.
The parties can make use of different, yet interoperable, KRMs matching their
needs for the specific communication session.



Lecture Notes in Computer Science 9

References

1. Balenson, D., Markham, T.: ISAKMP key recovery extensions. Computers & Se-
curity, 19(1) (2000) 91–99.

2. Denning, D.E.: Information Warfare and Security. Addison Wesley, (1998).
3. Denning, D.E., Branstad, D.K.: A taxonomy of key escrow encryption systems.

Communications of the ACM, 39(3) (1996) 34–40.
4. Dierks, T., Allen, C.: The TLS protocol, Version 1.0. RFC 2246 (1999).
5. Gupta, S.: A common key recovery block format: Promoting interoperability be-

tween dissimilar key recovery mechanisms. Computers & Security, 19(1) (2000)
41–47.

6. Kennedy, J., Matyas Jr., S.M., Zunic, N.: Key recovery functional model. Comput-
ers & Security, 19(1) (2000) 31–36.

7. Maughan, D., Schertler, M., Turner, J.: Internet security association and key man-
agement protocol (ISAKMP). RFC 2408.

8. National Institute of Standards and Technology: Requirements for key recovery
products. Available at http://csrc.nist.gov/keyrecovery/ (1998).

9. Rantos, K., Mitchell, C.: Remarks on KRA’s key recovery block format. Electronics
Letters, 35 (1999) 632–634.

10. Smith, M., van Oorschot, P., Willett, M.: Cryptographic information recovery using
key recovery. Computers & Security, 19(1) (2000) 21–27.

11. Williams, C., Zunic, N.: Global interoperability for key recovery. Computers &
Security, 19(1) (2000) 48–55.


