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In this paper the key storage problem associated with the provision of secure communications
between every pair of users in a large network is described, and a possible method of alleviating
the problem is discussed. This method, based on the use of finite incidence structures with special
properties called key distribution patterns, is shown to generalize earlier work in the area. The
more general formulation of the storage saving scheme contained here enables use to be made
of the extensive body of knowledge already existing on the theory of block designs. From this
theory we are able to extract a number of new families of examples of potentially useful key
distribution systems.
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1. Introduction

Suppose there exists a network of v nodes, PI, PZ' ...,P v say, where each node
wishes to have the facility to communicate with each other node in a secure way.
As an immediate consequence, each pair of users {Pi, Pj} requires a distinct
cryptographic key known to them but to no other user.

If conventional (i.e. symmetric or private key) cryptography is being used, then
the key management problem is commonly solved by using a key distribution centre
(KDC). This KDC know~ a distinct key encrypting key for each of the users in the
network. When a pair of users wish to communicate securely, the KDC manufac-
tures a key to be used by this pair of users, and then sends it to these users encrypted
under their respective key encrypting keys.

However, this scheme requires an online KDC and a network which is responsive
enough to enable keys to be distributed only when they are actually needed. It is not
difficult to imagine situations where this is not a viable assumption. In such cir-
cumstances one solution would be for every user to be equipped in advance with a
separate key for use with each other user in the network. Note that a KDC would
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almost certainly still be required to coordinate all the key manufacturing and
distribution processes.

This type of system clearly requires each user to store v-I keys and usually for
the KDC to store tv(v-l) keys. In large netwerks, where it might also be necessary
to store "old versions" of keys, the total storage requirement could increase to some
multiple of tv(v -1). Ultimately, these requirements could give rise to considerable
storage problems at both the KDC and at the user node. Possible solutions to thi~
problem have been discussed by a number of authors, e.g. Blom [2,3], and Jansen
[8]; we consider further solutions in the rather more general context previously
outlined in a recent paper, [9], where the limitations of Jansen's construction were
noted.

We propose the use of a certain special kind of finite incidence structure to resolve
this problem. Each user is then issued with a relatively small set of "sub keys", and
each key to be used by a pair of users is made up from a combination of some of
these subkeys. Note that Blom's ideas, [2,3], do not precisely fit this type of model
since he assumes the existence of some kind of algebraic structure on the subkeys.
To proc~ed we require some notation.

Afinite incidence structure.1{= (.'?J', [jJ, I) consists of two finite non-empty sets .'?J'
and [jJ and an incidence relation I where I C .'?J' x [jJ. We conventionally let I.'?J'I = v
and I [jJ I = b, and call the elements of .'?J' points and the elements of [jJ blocks. If
(P, x) E I, where P E.'?J' and x E [jJ, then we say that P is incident with x. It is often
convenient to consider the set of points incident with a block x, or the set of blocks
incident with a point P, and we use (x) and (P) respectively to denote these sets.
Hence we write (Pi) n (P» for the set of blocks incident with both Pi and Pj.

As well as using v and b for the total number of points and blocks respectively,
we write r(i) for I (Pi) I, i.e. the number of blocks incident with Pi, and k(j) for
l(xj)l. Finally, we also let A(i,j)= j(Pi)n(Pj)j and s(i,j) = I(Xi)n(Xj)j.

If every block is incident with the same number of points (i.e. k(i) = k for some
constant k) and no two blocks are incident with the same set of points then .1{ is
called a design, and these special incidence structures have been well studied, par-
ticularly because of their applications in statistical design of experiments. The in-
terested reader is referred to two recent books on this subject, [1,7]; where relevant
we use here the notation of Hughes and Piper, [7], and unless otherwise stated, all
results on designs used here can be found in their book. In line with common prac-
tice in design theory, if every point is incident with the same number of blocks, then
we write r for this number (i.e. r = r(j) for all j).

If ;:Y{ is a finite incidence structure with v ~ 3, then we call .1{ a key distribution
pattern (KDP) iff the following property holds:

Property 1.1. IfPi,PjE~then (Pi)n(Pj)C(Pm) iffi=m orj=m.

To use the notion of a KDP we now identify our set of network nodes with :P
and a set of subkeys with $, where (:P, $, I) is a KDP. Then the key to be used
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by users Pi and Pj to communicate with one another is made up from a combina-
tion of the subkeys in (Pi) n (Pj), and since we have a KDP, Property 1.1 implies
that no other user knows all the sub keys in this set. To combine the set of subkeys
to make an N-bit link key one might typically define each sub key to be an N-bit vec-
tor. over GF(2). and combine the sub keys using some sort of "one way function~'.

Before proceeding we attempt to justify our insistence that v ~ 3. If v = 2, then
there is really no key distribution problem in this context; note also that, given v ~ 3,
Corollary 2.3 below implies that b ~ 3.

In addition, note that Property 1.1 has a simple geometrical interpretation. The
axiom is precisely equivalent to demanding that the incidence structure has line size
2 (in the language of design theory. a line through points A and B is the set of points
contained in the intersection of the point sets (x), for all blocks XE (A) n (B).

To conclude these introductory remarks we exhibit the existence of some KDPs.

Then this corresponds exactly with the case where each pair of users is provided with
a unique key. This is what we call the trivial KDP on u points, since using this KDP
is equivalent to not using a KDP system at all. In the notation of design theory .:Y{
is a trivial 2-(u, 2, 1) design.

Example 

1.3. Suppose .1{= (.'1', [fl, I) is defined by

.'1'= {PJ, P2,...,Pu}' [fl={XJ,X2,.'.' Xv
allU (Pi, Xj) eI iff i is not equal to j.

In this case I(Pi) n (Pj)1 = v -2, and (Pi) n (Pj) contains all blocks except Xi and Xj.
It is immediately clear that .::f{ is a KDP. In the notation of design theory, .::f{ is a
trivial 2-(v, v-I, v -2) design.

Example 1.4. Suppose.J{= (fI', f!iJ, I) is a 2-(v, k, 2) design satisfying b = v (and hence
r = k and v = t(k2 -k + 2); then .J{ is normally called a biplane. A discussion of

biplanes can be found in [7, Chapter 3]; [6, Chapter 15] contains a complete listing
of all the known non-isomorphic biplanes (of which there are only 17, the largest
having k= 13). Any 2-(v, k, A) design satisfying b = v is usually referred to as a sym-
metric design, and in such a design any two blocks always have A points in common.
So, in a biplane, any two blocks have 2 points in common, and it is then immediate
to see that a biplane must be a KDP.

We now consider three different ways in which two KDPs can be joined to give
a new larger KDP. The proofs that these constructions actually give KDPs can be
found in a more general setting in Section 3 below.
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Construction 1.5. Suppose that .1{= (.'JjJ,yc, $,yc, I,yc) and fJ!= (.'JjJf}!, $f}!, If}!) are KDPs

having v,yc, b,yc and vf}!, bf}! points and blocks respectively. This construction com-
bines these two KDPs to give a new KDP with v,yc+ vf}! points and b,yc° bf}! blocks,

and which we will denote by vIt=(.'JjJ"", $"", 1.It).

Let

f1J.,t{=f1J.xUf1J!l!' fII.,t{={(X,Y):XEfII.x, YEfII!l!}

and define 1.,t{ as follows. If PEf1J.,t{, then P is incident with block (x, y) iff eitherP 
E f1J.x and P is incident with x in .:Y{, or P E f1J!l! and P is incident with Y in f£. More

informally we write fII.,t{={XUY:XEfII.x,YEfII!l!}' where the incidence is "in-
herited" from .:Y{ and f£, and where by the union xU Y of two blocks we mean the
block z with the property that (z) = (x) U (y).

Construction 1.6. Suppose that $=(~,x, ~,x, I,x) and .P=(~p, ~p, Ip) are KDPs
having v,x, b,x and v.'£, bp points and blocks respectively. This construction com-
bines these two KDPs to give a new KDP with v,x+ vp-1 points and
b,x+ r,x(;)(bp -1) blocks (where r ,x(;) is the number of blocks incident with a
chosen point from ~,x), and which we will denote by .;(( = (~.,(t, ~.,(t, I.,(t).

First choose some PiE~,x, and let ~.,(t=(~,x-{Pi})U~p. Now divide the
blocks of $into two subclasses, namely those which are incident with Pi and those
which are not, and call these classes gJ and :!ll respectively (note that gJU:!ll = ~,x).

We now set

f!lJ.g= 11l U {xU Y- {Pi}: XE.@, Y E f!lJ[i?},

where the union of blocks is defined precisely as in the previous example, and the
incidence relation is derived directly from the incidence relations in .:Y{ and !l!. '

Construction 1.7. Suppose that .:1{= (f!l'.Y{' :?JJ.Y{, I.Y{) and .P= (f!l'p, :?JJp, Ip) are KDPs
having u.Y{, b.Y{ and up, bp points and blocks respectively. This construction com-
bines these two KDPs to give a new KDP .,,{t=(f!l'.g, :?JJ.g, I.g) with u.Y{+ up-2 points
and b.Y{+ bp+ (r.Y{(i) -1)(rpU) -1) -1 blocks, where r.Y{(i) is the number of blocks
incident with a chosen point Pi from f!l'.Y{, and rpU) is the number of blocks inci-
dent with a chosen point Qj from f!l'p.

First let

[iJ",,=([iJ.1{-':' {Pi}) U([iJp- {Qj}).

Now divide the blocks of .1{into two subclasses, namely those which are incident
with Pi and those which are not, and call these classes fll.1{ and ~.1{ respectively
(note that fll.1{ U ~.1{= /!iJ.1{). Similarly divide the blocks of fI! into two subclasses,
namely those which are incident with Qj and those which are not, and call these
classes fllp and ~p respectively (note that fllpU~p= /!iJp). We now set

/!iJ",,= ~.1{U ~p U{(x- {Pi}) U (y- {Qj }): XE fll.1{, Y E fllp}.
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These examples and constructions show that there are many nontrivial kDPs. We
now need some way of assessing the relative usefulness of these KDPs in terms of
the amount of storage space that they can save. Three primary objectives must be
firstly to minimize the total number of subkeys, i:e. to minimize b (which determines
the amount of storage required at the KDC), secondly to minimize the total storage
required at all the network nodes, i.e. to minimize r(I)+r(2)+ ...+r(v) and thirdly
to minimize the maximum storage required at anyone node, i.e. to minimize
max{r(i)}. Different situations may require other measures of usefulness.

It should now be clear that, of the three construction methods described above,
Construction 1.7 is potentially the most useful, since the KDPs constructed this way
will have smaller b for given v, which is one of our chief objectives. We conclude
these introductory remarks by giving a small example of Construction 1.7; note that
this example is unrealistically small.

Example 1.8. Let ;1{and !I! both be 2-(7,4,2) designs, i.e. 7-point biplanes. Suppose
that

.o/>.1{= 

{PI,

,P7}'

{JJ.q?={Q"...,Q7}

:!lJ.1{={XI,.."X7}' :!lJfj!={YI'...'Y7}'

and let the blocks of .1{ and [£ be incident with the following sets of points: XI
with {P3, Ps, P6, P7}, Xz with {Pz, P4, Ps, P6}, X3 with {PI, P4, P6, P7}, X4 with
{Pz, P3, P4, P7}, Xs with {PI, Pz, Ps, P7}, X6 with {PI, Pz, P3, P6}, X7 with {PI, P3,
P4, Ps}, YI with {Q3, Qs, Q6, Q7}' Yz with {Qz, Q4, Qs, Q6}' Y3 with {QI, Q4, Q6, Q7}'
Y4 with {Qz, Q3, Q4, Q7}' Ys with {QI, Qz, Qs, Q7}' Y6 with {QI, Qz, Q3, Q6} and Y7
with {QI' Q3, Q4, Qs}.

If we "choose" points PI and QI, then the incidence structure"'" obtained using
Construction 1.7 has point set

,Q7:f/J,-N= {Pz, ,.. P7, Qz,

(i.e. v = 14) and block set

[lJ.,((= {Xl' X2' X4' Yl' Y2' Y4} U {Zij=XiU Yj- {PI, Ql}: i,j= 3,5,6, 7}

(i.e. b = 22). Each point is incident with 10 blocks, e.g. Q4 is incident with blocksY2' 

Y4' Z33' ZS3' Z63' Z37' Z73' ZS7' Z67' Z77.

2. 

Key distributiou patterns: Some theoretical results

Before proceeding to any theoretical results on KDPs we digress briefly to con-
sider a result on systems of subsets of a set. This result will in turn give us some
useful inequalities for KDPs. The result quoted here can be found in Bollobas' in-valuable 

book, [4].
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Let fB be a finite set of cardinality b, i.e. IfB I = b. Also let .(jJ(fB) be the set of
all subsets of fB, i.e. the power set of fB, and hence .(jJ(fB) has cardinality lb. If
9'is a subset of .(jJ(fB), then 9'is known as a Sperner system iffSc T and S, Te 9'
implies S= T.

Then we immediately have:

Result 2.1 (Sperner, 1928). If flJC~(fj/) (Ifj/ I =b) is a Sperner system, then
IflJl :5bC[b/21' where by mCn we mean the binomial coefficient m!/n!(m-n)!.
Equality is achieved iff flJ is the class of all w-subsets of fj/, where w = tb if b is even
and w=t(b-1) or w=t(b+ 1) if b is odd.

The relevance of Sperner systems to KDPs is indicated by the next result.

Lemma 2.2. If $= (.':/l, /?JJ, I) is a finite incidence structure, then $ is a KDP iff
{(P) n (PI): P, P' distinct elements of.':/l} is a Sperner system of subsets of /?JJ.

Proof. Suppose first that .1{ is a KDP. Choose P, P', Q, Q' e.'J' (P, P' and Q, Q' are
distinct pairs) and suppose that (P) n (P') C(Q) n (Q'). Then

(p)n(p')C(Q) and (p)n(p')c(Q'),

and so, by Property 1.1, either P=Q and P'=Q' or P=Q' and P'=Q. Hence
{(P) n (P'): P, P' distinct elements of .'J'} is a Sperner system of subsets of fB.

Now suppose that {(P) n (P'): P, P' distinct elements of .'J'} is a Sperner system
of subsets of fB and suppose also that (p}n(PjC(Q) for some P,P',Qe.'J'. Then
(p)n (P')C(Q)n (Q') for any Q'e.'J', and hence either P=Q or P'=Q. Hence.1{
is a KDP. 0

Combining Lemma 2.2 with Result 2.1 gives us immediately:

Corollary 2.3. If..1[=([1J,.%', I) is a KDP, then vC2~bC[b/2].

This gives us the following lower bounds on b for small values of v:

minbv

3
4

3
4
5
6
7
7
8

6

8
9
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Hence if a KDP exists with b < v then v ~ 8. Also note that, for any chosen
ie{1,2,...,v}, the set {(Pi)n(Pj):j distinct from i} forms a Sperner system of
subsets of (Pi), Hence, again applying Result 2.1 we have:

Lemma 2.4. If.Y{ = (~, :?JJ, I) is a KDP, then

v-l:5 r(i)C[r(i)/2] for every i E {I, 2,

,v}.

This gives us the following lower bounds on r(i) for small values of v:

min r(i)v

3
4

5
6
7
8
9

4
4
4
5
5

Finally note that it should be clear that if ..1t = (f!IJ, .'?iI, I) is a KDP then {(P):
Pe f!IJ} is an intersecting family of subsets of .'?iI (where we define an intersecting
family of subsets to be one having the property that any two elements of the family
will have a non-empty intersection). Hence, by a result from Bollobas, [4, Chapter
7], we know that V:52b-l. Unfortunately this bound is always weaker than the
bound of Corollary 2.3 and so we do not consider it further here.

Having established these very basic inequalities we consider ways in which we can
impose additional structure on the KDPs. We do this with the hope that it will in-
dicate better how to construct examples having desirable properties.

Firstly note that, by Result 2.1, in order to obtain a Sperner system of maximal
cardinality it is necessary to choose subsets all having the same size. Hence, by con-
sidering Lemma 2.2, it might be possible to maximize v for given b by choosing
A(i,j)=A for every i,j.

If ..1tis a KDP with this property (called (R.2) by Dembowski [5, Section 1.1]),
then we call ..1t a balancer.! KDP. In the notation of design theory ..1tis then a pairwise
balanced design, and, as is well known (see, for example, [1, Theorem 11.2.6])
Fisher's inequality holds for such structures. So we have:

Theorem 2.5 (Generalized Fisher inequality). If..1{ is a balanced KDP then b~ v.

A second way in which we might impose additional structure on a KDP is by
assuming that it is a I-design, i.e. by supposing that r(i) = r for every i e {I, 2, ..., v}
and k(j)=k for everyje{I,2,...,b}. Then we have:



222 C.l. Mitchell, F.C. Piper

Lemma 2.6. If.Y{ is both a KDP and a I-design, then either .Y{ is a trivial KDP or
r~3, k~3 and A(i,j)~2for every i,je{I, 2,...,u}.

Proof. If r = 1 or k = 1 then b = v = 1 which contradicts our definition of KDP.
If r= 2, then since we must have 1 ~A(i, j) < r= 2 for every i andj, .:Y{is a balanced

KDP with A=I, i.e. .:Y{is a 2-(v,k, 1) design with r=2. Hence b~v, and since
bk=vr in a I-design and Av(v-I)=bk(k-I) in a 2-design, [7J, k~r=2, i.e.
b=v=3 and k=r=2, and .:Y{is the unique trivial KDP having r=2.

If k = 2, then, since no two blocks are incident with the same set of points, every
pair of points are incident with a unique block which is itself incident with no other
points. Hence .:Y{ is balanced, i.e. .:Y{ is a 2-(v, 2, 1) design which must be a trivial
KDP.

Finally now suppose that k, r~ 3, and suppose that A(i,j) = 1. If we let
(Pi) n (Pj) = {xs}, then Xs cannot be incident with any other point by the definition
of KDP. Hence r= 2, contradicting our assumption. 0

3. 

Collusion and collusion-resistant key distribution patterns

As Blom, [2], has pointed out this type of system can easily break down if two
or more people pool their sets of subkeys. More formally, if P, P', Q, Q' E f:1J satisfy
(P) n (P')c (Q) U (Q') (where P, P' and Q, Q' are both distinct pairs) then if the
users corresponding to Q and Q' pool their sets of subkeys, they have sufficient in-
formation to compute the key used by users P and P' to communicate with one
another.

This is clearly a most undesirable property, and so we now add an additional con-
straint in order to construct what we call collusion-resistant KDPs.

If w~ 1, then define a w-collusion resistant KDP (w-CRKDP) to be a finite in-
cidence structure .:Y{= (f:1J,~, I) such that v ~ 3, no two blocks are incident with the
same set of points, and if 1 ~ i,j ~ v and

H = {h(I), h(2), ..., h(w)} c {I, 2, ..., v},

then we have:

Property 3.1. (p;)n(Pj)C

U:= 

I (Ph(s» iff either i E H or j E H.

More informally we now have an incidence structure with the following property.
For any pair of points, A, B say, the set of blocks with which they are both incident
is not contained in the union of the sets of blocks incident with any set of up to w
points unless A or B are contained in the set. Hence, in our application, if at most
w users pool all their subkeys they will be unable to deduce any of the keys used
in the network apart from those which are used by at least one of them.

Note that it should be clear that the definition of l-CRKDP corresponds precisely
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to the previous definition of KDP. We now provide some examples of w-CRKDPs
for w> 1.

Example 3.2. A trivial KDP is clearly a w-CRKDP for every w.

Example 3.3. Suppose ..1{is a 3-design for which A2>WA3. Then ..1{is a w-CRKDP.
We now show why this is true. Suppose that 1:5 i <j:5 v,

H = {h(1), h(2), ..., h(w)} C {1, 2, ..., v} -{i, j},
and

w

(Pi) n (Pj) C U (Ph(sJ.
s=1

By definition

l(p;)n(Pj)1 =).2 and I(p;)n (Pj)n (Ph(s»! =).3

for every S E { 1, 2, ..., w}. Since we know that A2> w).3, we have an immediate con-
tradiction and the desired result follows.

The standard relation amongst the parameters of a 3-design means that the condi-
tion A2>WA3 is equivalent to assuming that v>w(k-2)+2. Also note that in any
3-design A2 > A3, and hence any 3-design is a KDP; in geometrical terms it should
be clear that in a 3-design every line has size 2.

Before considering any further examples we examine some geometrical implica-
tions of our definition. We first need some basic definitions.

If .:Y{=(~, flJ,I) is an arbitrary finite incidence structure, and PE~, then we
define the internal structure of .:Y{ at P, written .:Y{ p, to be the structure having point
set ~- {P} and block set {XE flJ: x contains P}. In addition we define the external
structure of .:Y{at P, written .:Y{P, to be the structure having point set ~- {P} and
block set {XE flJ: x does not contain P}. We can now state:

Lemma 3.4. Suppose that..1{= (.'J1, f!lJ, I) is afinite incidence structure," Then ifw~ 1,
..1{ is a (w+ l)-CRKDP if and only if..1{P is a w-CRKDP for every PE.'J1,

Proof. First suppose that .:Y{is a (w+ l)-CRKDP. Choose Pe.tffJ, and then choose
a further pair of point~, C, D say, from .:Y{P. Suppose iJ)f is a further set of w
points from .:Y{ P. Then iJ)f U {P} is a (w + 1 )-set of points from .:Y{, and hence there
is a block incident with both C and D which is not incident with any point from
iJ)fU {P}. Since this block is not incident with P it must be a block of .:Y{P, and the
result follows.

Now suppose that .:Y{P is a w-CRKDP for every Pe.tffJ. Now choose a pair of
points C, D e .tffJ and further let .q);" be a set of w + 1 points from .tffJ (not containing
C or D). If we suppose that Q e.q);", then we know that .:Y{Q is a w-CRKDP. Hence
there exists a block in .:Y{Q which is incident with both C and D but which is not
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incident with any point from f!l: -{ Q}. This immediately gives us a block in ..1{ which
is incident with C and D but yet is not incident with any point in f!l:. The result
follows. 0

It is well known that if ..1{is a I-design, then..1{P is a (t-I)-design for any point
P from ..1{. Combining this knowledge with Example 3.3 and Lemma 3.4, we im-
mediately have:

Example 3.5. Suppose .:1tis a (w+2)-design, where w~ 1. Then .:1tis a w-CRKDP.
However, having made this observation we note that the use of t-designs with t ~ 4

is of limited value in our context. Unfortunately it is true that, if t~4, then
b~ vCz. Hepce, if a t-design is used with t~4 the number of pieces of information
to be stored at the key distribution centre will be at least as great as for the trivial
KDP.

Finally we observe that Constructions 1.5, 1.6 and 1.7 can be used to give w-
CRKDPs for arbitrary values of w. In each case suppose that .:1t and fI! are w-
CRKDPs, and, as proved below, the derived KDP .,(( is always also a w-CRKDP.
Again it should be clear that usually Construction 1.7 is the most useful means of
construction.

3.1. 

Proof that Construction 1.5 gives a w-CRKDP

Choose any two points A,BegJ"". There are three cases to consider, namely: (i)
A,BegJ.x, (ii) A,BegJ!/!, and (iii) A egJ.x, BegJ!/!. In each case suppose that there
exists a w-subset r6'C gJ "" such that every block in ~""that contains A and B is also
incident with at least one element of r6'. For the purposes of the discussion below
let r6'=r6'IUr6'2, where r6'lcgJ.xand r6'2CgJ!/!.

Case (i). Suppose xefB.1{ is incident with both A and B. Then xUye fBvtt is inci-
dent with both A and B, for any y e fB 9!. By our assumption all these blocks xU y
must be incident with at least one element of rb'. If x is not incident with an element
of rb'1, then this implies that every block y e fB9! is incident with at least one element
of rb'z, a contradiction since I rb'zl ~ w. Hence x is incident with a block of rb'1, again
giving a contradiction since I rb' II ~ w.

Case (ii). Since the definition of vi{ is completely symmetric in .:Y{ and fI!, this case
follows using an identical argument to Case (i).

Case (iii). If P);"C~.:Y{ contains all the~locks incident with A, and auC~!Z con-
tains all the blocks incident with B, then the set of blocks of ~.,{( incident with both
A and B is precisely {xU y: XE f?J::, y E au}. Hence either every block of P);"is incident
with at least one point of rb'l or every block of au is incident with. at least one point
of rb'2. In either event we again have a contradiction. The result now follows. 0
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3.2. Proof that Construction 1.6 gives a w-CRKDP

Choose any two points A, B E.'J'.,It. There are three cases to consider, namely: (i)
A,BE.'J',x, (ii) A,BE.'J'!l!' and (iii) A E.'J',x, BE.'J'!l!. In each case suppose that there
exists a w-subset rcC.'J'.,It such that every block i~ fIJ.,It that contains A and B is also
incident with at least one element from rc. For the purposes of the discussion below
let rc= rc 1 u rc2, where rc 1 C.'J',x and rc2 C.'J'!l!.

Case (i). Define rc'C.'J',x by rc'= rc1 if rc= rc1 and rc'= rc1 U {Pi} otherwise.
Then rc' is a subset of .'J',x containing at most w points. Suppose x E fIJ,x is incident
with both A and B. First suppose that x is incident with Pi. Then
(x- {Pi}) U Y E fIJ.,It is also incident with both A and B and hence with at least one
element, Q say, from rc. If QE rc1 then QE rc' and x is incident with Q. If QE rc2,
then PiE rc' and x is incident with Pi, i.e. x is always incident with at least one ele-
ment of rc'. Now suppose that x is not incident with Pi. Then x E fIJ.,It is also inci-
dent with both A and B and hence with at least one element, Q say, from rc.
Moreover Q must be in rc 1 (since x E fIJ,x), and hence Q is in rc'. Hence, regardless
of the choice for x it is always incident with at least one element of rc', giving the
desired contradiction.

Case (ii). If .?lC[IJ.1{is defined as above, and WC[IJ!l!contains all the blocks inci-
dent with both A and B in .r£, then the set of blocks of [IJ.I( incident with both A
and B is precisely {xUy- {Pi}: XE.?l, YE W}. It is then straightforward to see that
either every block of .?l is incident with at least one point of rc I or every block of
W is incident with at least one point of rc 2' However, since I rc II, I rc 21 :5 w this gives

the desired contradiction.

Case (iii). If .'!}:C.%',:I{ contains all the blocks incident with both A and Pi, and
WC.%'.9;' contains all the blocks incident with B, then the set of blocks of .%'..« inci-
dent with both A and B is precisely {x U y -{Pi}: x E .'!}:, YEW}. Hence either every
block of .'!}:is incident with at least one point of ~1 or every block of Wis incident
with at least one point of rez. In either event we again have a contradiction. The
result now follows. 0

3.3. 

Proof that Construction 1.7 gives a w-CRKDP

Choose any two points A, B e E1' vIt. There are three cases to consider, namely: (i)
A,BeE1'.x, (ii) A,BeE1'Jl!' and (iii) A eE1'.x, BeE1'Jl!. In each suppose that there ex-
ists a w-subset ~CE1'vIt such that every block in flJvIt that contains A and B is also
incident with at least one element from ~. For the purposes of the discussion below
let ~= ~1 U ~2' where ~1 CE1'.x and ~2CE1'Jl!'

Case (i). Define ~/CE1'.x by ~/= ~1 if ~= ~1 and ~/= ~1 U {Pi} otherwise.
Then ~ I is a subset of E1'.x containing at most w points. Suppose x e fIJ.x is incident

with both A and B. First suppose that x is incident with Pi, Then (x -{Pi}) U
(y -{Qj }) e flJvIt is also incident with both A and B and hence with at least one ele-
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ment, R say, from ~. If Re ~l then Re ~' and x is incident with R. If Re ~2,
then Pi e ~ 1 and x is incident with Pi, i.e. x is always incident with at least one ele-

ment of ~ '. Now suppose that x is not incident with Pi, Then x e .'?iJ,-H is also inci-
dent with both A and B and hence with at' least one element, R say, from ~.
Moreover R must be in ~ 1 (since x e.'?iJ.1(), and hence R is in ~ ': Henge, regardless
of the choice for x it is always incident with at least one element of ~/, giving the
desired contradiction.

Case (ii). Since the definition of .;{tis completely symmetric in .Y{and.P, this case
follows using an identical argument to Case (i).

Case (iii). If .Pl:C f!iJ.x contains all the blocks incident with both A and Pi, and
W C f!iJ!l: contains all the blocks incident with Band Q}, then the set of blocks of
f!iJ""incident with both A and B is precisely {(x- {Pi}) U (y -{Q}}): XE.Pl:, YEW}.
Hence either every block of .pl: is incident with at least one point of r6' 1 or every
block of W is incident with at least one point of r6' 2. In either event we again have
a contradiction. The result now follows. 0

Note that, by introducing a little notation, the relationship between the above
three methods of construction can be clarified. If..;({ is constructed from .1{ and !l!
using the method of Construction 1.5 then we write ..;({ =.1{.!l!, and we call ..;({ the
product of .1{ and !l!. Then, the method of Construction 1.6 is simply ..;({ =
.1{PU.1{p.!l!, and the method of Construction 1.7 is ..;({=.1{PU!l!QU.1{P.PQ.

4. Further developmeuts

F={

We have so far considered only the case where pairs of users wish to have the
means to communicate securely. This idea can be generalized to the situation where
every subset of users of size at most g needs to have a key known only to the
members of the group. This key can then be used by the members of the closed user
group to send secret messages to all the other members of the group.

For this reason we define a (g, w)-collusion resistant KDP «g, w)-CRKDP) to be
a w-CRKDP .:Y{= (fJl,.:11, I), for which if

f(1),f(2),...,f(g)} and H={h(1),h(2),...,h(w)}

are arbitrary g- and w-subsets of {I, 2, ..., v} respectively, then we have:

It should be clear from the above definition that a (2, w)-CRKDP is precisely the
same object as a w-CRKDP.

Before giving examples of these structures we need the following generalization
of Lemma 3.4 above:
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Lemma 4.2. Suppose that .:1{ = (!P, :?JJ, /) is a finite incidence structure. Then if
g, w~ 1, .:1{is a (g, w+ l)-CRKDP if and only if.:1{P is a (g, w)-CRKDP for every
Pe!P.

Proof. First suppose that .:Y{is a (g, w+ 1)-CRKDP. Choose Pefl', and then choose
a set of g points, <§ say, from .:Y{P. Suppose OJfis a further (disjoint) set of w points
from .:Y{P. Then OJfU {P} is a (w+ I)-set of points from .:Y{, and hence there is a
block incident with all the points in ffj which is not incident with any point from
OJfU {P}. Since this block is not incident with P it must be a block of .:Y{P, and the
result follows.

Now suppose that.:Y{P is a (g, w)-CRKDP for every Pefl'. Now choose a set of
g points <§ C fl' and further let :?1:be a set of w + I points from fl' (disjoint from <§).
If we suppose that Qe:?1:, then we know that.:Y{Q is a (g, w)-CRKDP. Hence there
exists a block in .:Y{Q which is incident with all the points in ffj but which is not inci-
dent with any point from :?1: -{ Q}. This immediately gives us a block in .:Y{ which
is incident with all the points in ffj but yet is not incident with any point in :?1:. The
result follows. 0

Using this lemma we can now show that I-designs provide useful examples of
(g, w)-CRKDPs (generalizing Example 3.5 above).

Example 4.3. Any (g+ w)-design is a (g, w)-CRKDP (where g, w~ I).
First observe that any (g+I)-design is a (g, I)-CRKDP (since Ag>Ag+l in any

(g+ I)-design). Now, by noting that if .:Y{is a t-design then.:Y{P is a (t-I)-design
for any point P from .:Y{, the result follows by induction on w (using Lemma 4.2

above).

5. 

Conclusions

In this paper we have introduced a number of new concepts, and shown how the
theory of incidence structures may be applied to key management problems. Fun-
damental questions arising out of this work, such as finding optimal solutions to
the problems posed by particular situations, will be considered in future papers.
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