IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

163

Parameter Selection for Server-Aided
RSA Computation Schemes

John Burns and Chris J. Mitchell

Abstract— The security, complexity, and application of two
schemes for using an untrusted auxiliary processor to aid smart
card RSA signature computations are reviewed, including de-
tailed analysis of possible methods of attack. Guidance is given
on practical, secure use of these schemes.

Index Terms—Digital signature, modular exponentiation, RSA,
server-aided computation, smart card.

1. INTRODUCTION

A. Scope and Purpose

ANY potential applications exist for smart cards capa-

ble of performing digital signatures. However, currently
available smart cards tend to have very limited processing
power, and signature algorithms, such as RSA, are computa-
tionally intensive. As a result, performing a single signature
operation on a smart card can take far too long (e.g., tens of
seconds) for practical applications to be feasible.

In a recent paper by Matsumoto et al. [4], two schemes
(which we refer to as the MKI schemes) for using an un-
trusted auxiliary processor to speed up smart card RSA signa-
tures were introduced. One main reason for introducing such
schemes is that smart card readers could easily be equipped
with more sophisticated processors capable of high-speed
multiprecision arithmetic. Of course, if the auxiliary processor
(in a card reader or elsewhere) were to be trusted, then the
auxiliary processor could be given the secret RSA key and
asked to perform the whole calculation. However, this is not
normally the case, and the whole objective of these schemes is
to make use of the auxiliary processor without compromising
the secrecy of the RSA private key.

The main purpose of this paper is to suggest choices for
parameters for the MKI schemes, and to indicate how they can
be used without risking compromise of the secret RSA key.
There is a marked absence of any existing published guidance
on the choice of parameters for such schemes, and providing
this guidance is a nontrivial problem.

B. Preliminary Notation and Assumptions

The basic objective of the protocols discussed herein is to

Manuscript received June 4, 1991; revised September 18, 1992, and
January 4, 1993. This work was supported in part by Hewlett-Packard
Laboratories, Bristol, England.

J. Burns is with Hewlett-Packard Laboratories, Bristol, England.

C.J. Mitchell is with the Department of Computer Science, Royal Holloway,
University of London, Surrey, England.

IEEE Log Number 9212692.

compute an RSA signature using a smart card. We assume
throughout that the smart card is equipped with a secret RSA
key, consisting of a secret exponent d, and a pair of primes
p,q with the property that

3d=1 (modM(N)),

where N = pq and, hence, A(N) = lem(p ~ 1,¢ — 1) (see,
for example, [3, p. 19]). In other words, we are assuming that
the RSA key is chosen so that the public exponent is 3; this is
a reasonable and apparently secure assumption given that the
key is used only for signature and not for data encryption [2].

Then we assume that the smart card needs to compute a
signature on a message M, where 0 < M < N —1; that is,
the smart card wishes to compute

M?mod N.

To make maximum use of the auxiliary processor, it will
be necessary to give certain information to this processor
regarding the value of d. However, this information must be
limited so that an infeasible amount of work remains for this
processor to perform to deduce the value of d. Throughout
this paper we assume that the information released to the
auxiliary processor regarding d must be limited so that at least
264 ~, 1019 trials will still be required to deduce d.

Finally, to make the procedure worthwhile, we assume
that the smart card has very limited computing power, but
that the auxiliary processor is capable of performing fast
multiprecision arithmetic (in particular, fast multiprecision
modular exponentiation).

II. MKI SCHEMES

A. RSA-SI

The first scheme, called RSA-S1 by Matsumoto et al. 4]
is the simpler of the two. It operates as follows.

The fundamental idea is to represent d (the secret exponent)
as

d= f]dl =+ fgdz + -+ fkdk (mod)\(N)),

where fi, fa,- -, fi are all small.

The auxiliary processor is equipped with the values
dy.dg, -,dr and N and is requested to compute the
following values:

21 = M* mod N, 2z = M% modN,- -,
2x = M* mod N,

0018-9340/94%04.00 © 1994 IEEE

164

which are returned to the smart card. The smart card then
computes

k
M =T](z)" (modN),

i=1

which should involve relatively small numbers of modular
multiplications given that £ and f;, f2,-++, fr are not too
large. Typically one would require each fitosatisfy 0 < f; <
a — 1 for some a.

Note that the scheme actually described in [4] has a = 2;
that is, every f; is either 0 or 1. In addition, Matsumoto et al.
suggest requiring that at most ¢ of the values fivfa, -+, fu be
nonzero (thereby limiting the number of multiplications that
the smart card is required to perform).

B. RSA-S2

This algorithm improves the performance of the RSA-S1
algorithm by using the Chinese Remainder Theorem (CRT)
and taking advantage of the fact that the smart card can,
without loss of security, be equipped with the factors p and
g of N.

The basic idea for speeding up secret key exponentiation by
using the CRT is well known, and dates back to Quisquater
and Couvreur [5]. It works as follows. Suppose that d, =
dmod (p ~ 1) and dy = dmod (g — 1). If Sp = M% mod p
and §, = M% mod g, then

Me= (Spwp + Sqwy) mod N,

where
wp = (g™ " mod p)
and
wy = p(p™" mod q)
and, hence, w, = 1(modp),w, = O(modgq), w, =

0(modg), and w, = 1(mod p).

Now computing 5, and Sy is, in general, significantly easier
than computing M? directly, and, since wp and w, can be
precomputed and stored, this gives a significantly faster way
of computing a signature.

This idea can be applied to the RSA-S1 scheme described
earlier, and this is the basis of RSA-S2, which we now
describe. Suppose w,,wy,d,, and dy are as given earlier.
Represent d,, as

dp = frdi + fady + - - + frdy (modp — 1)
and represent d, as
dg = g1di + gada + - - + grdy (mod g - 1),

where f1, fa,- -+, fi, 91,92, -, gx are all small.

As in RSA-S1, the auxiliary processor is equipped with the
values dy,dy,---,dy, and N and is requested to compute the
following values:

2 =M* mod N, 2z, =M% mod N, -- .,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

2 = M% mod N,

which are returned to the smart card. The smart card then
computes the following:

k

Sp=[](z)" (modp)

=1
k

So= (=) (modyg)
i=1

and
M? = (Syw, + Sqwg) mod N,

which involves relatively small numbers of modular mul-
tiplications given that the values of k, fi,fay -+, fr and
91,92, "+, gk are not too large. Note also that all these modular
multiplications (apart from the last two) are of “half length,”
that is, modulo p and g which are of the order of VN. As
before, one would normally require each f; and g; to fall in
the range [0,a — 1] for some a.

The preceding algorithm actually differs in two small re-
spects from the algorithm described by Matsumoto et al. [4].
First, they assume that ¢ = 2, that is, every f; and g; is either
0 or 1; however, they do note that other values of a can be
used. Second, they have the additional constraint that at most ¢
of the values f1, fo,- -+, fx, 91, g2, - - - » 9k are nonzero, thereby
limiting the number of multiplications that the smart card is
required to perform.

Before proceeding, observe that, to simplify much of the
discussions that follow, we will assume that a is a power of
2; that is, we assume that a = 2°¢ for some positive integer c.

C. Other Schemes

First, note that an even simpler scheme for reducing the
computation required from the smart card would be to choose
the secret RSA exponent to be small, say choose d so that
d < 254, Although this would mean that the public exponent e
would typically be of the order of N, , this would not necessarily
be a problem because checking RSA signatures will often
be performed by large, powerful processors. However, this
approach has been shown to be fatally flawed by Wiener [8].
Basically, Wiener has shown that if e is public and it is known
that d satisfies

0<d< N4

then N can be factorized in polynomial time. Nevertheless,
as shown in [8], the attack that finds d if d < N4 cap
be circumvented by adding a multiple of A(N) to e so that
e > N%/2_ This is another possible approach to reducing the
load on the smart card.

Another alternative is the adoption of an additional variant
of RSA-S1 proposed by Quisquater and De Soete [6]. This
variant, although not without certain advantages, requires a
significantly greater amount of computation to be performed
by the smart card as well as a much greater volume of data
to be transferred between the smart card and the auxiliary
processor. We do not consider it further here.

BURNS AND MITCHELL: SERVER-AIDED RSA COMPUTATION SCHEMES

III. COMPUTATIONS MUST ALWAYS BE CHECKED

Next, we consider what countermeasures may be required
against an auxiliary processor that attempts to obtain informa-
tion about d by supplying the smart card with incorrect values
for certain of z, zo, - -, 2. We start by examining RSA-S1.

One possible attack is as follows. Suppose the auxiliary
processor supplies the smart card with correct values for
z; for all values of 7 except for ¢ = j, in which case it
provides z; = tM% mod N for some t with the property
that 10, ¢1,¢2.¢3,- .-t~ 1 are all distinct (mod N). Using the
supplied values, the smart card will actually compute

55 M? mod N,

which we suppose it outputs as the required signature, S
say. Assuming the auxiliary processor has access to this
“signature”, it can deduce the value of f; by the following
procedure. First, compute

S§3 =3 M3t =35 (mod N).

Now compute ¢ mod N (i = 0,1,2,---) until a match is
found with S®. The corresponding value of i will then equal
f;. Note that, in practice, the values of ¢3 mod N can be
precomputed.

If the main objective of the auxiliary processor is to fraud-
ulently obtain the smart card’s signature on a message of its
own choosing, then an even simpler attack will work. Suppose
the message the auxiliary processor wishes to have signed
is X. Then, when requested for the values M?% mod N, the
auxiliary processor instead supplies X% mod N for every i.
The signature output by the smart card will then be simply
X% mod N, as required by the auxiliary processor.

The only way to defeat these attacks is for the smart card to
have some means of checking either the provided information
or the final signature. The latter seems easiest since we have
already assumed that the public RSA exponent is always 3. To
check the signature, it is therefore only necessary to cube it
mod N and verify that it agrees with the original message.
This has the relatively small cost of adding two modular
multiplication operations to the total work that needs to be
performed by the smart card. Note that the need to protect
against possible fraud by the auxiliary processor has been
mentioned elsewhere, as has the possibility of checking the
computation by cubing it mod N [6].

We now consider the same problem for the RSA-S2 scheme.
The situation is not quite as simple as for RSA-S1, although
attacks are still possible. We start by examining an attack
due to Shimbo and Kawamura [7]. Suppose the auxiliary
processor supplies the smart card with correct values for z;
for all values of ¢ except for ¢ = j. in which case it provides
z; = —M% mod N. Using the supplied values, the smart card
will actually compute

$p = [1G0)" = (1% M? (modp)

k
S =[]0 = (-1)» M (mod).

165

and then the signature S will be derived as
S = (Spwp + Sqw,) mod N.

If S is output by the smart card and intercepted by the
auxiliary processor, then the auxiliary processor will (almost
always) be able to use it to factorize N if f; # g; (mod
2). To show how this attack operates we assume without
loss of generality that f; is even and g; is odd. Hence
S, = M4 (modp) and S = —M*(modq), and thus S =
M (mnodp) and S = —M? (mod g).

First, the cryptanalyst computes

X =8°+ MmodN.

Hence, X = 2M (mod p) and X = 0mod ¢). By inspection,

2wpM =2M (modp)
and
2w,M =0 (modq)
and thus,
X =2w,M (modN).

Next, suppose that p ¥ M (hence the “almost always”
earlier). Then,

(va) - <2wPM~p) =1,

since w, = 1 (mod p). Hence, (X, N) = ¢, and one applica-
tion of the Euclidean algorithm will reveal the factorization
of N.

Shimbo and Kawamura [7] go on to describe two ways
in which the attack might be prevented. First, they suggest
checking the signature before disclosing it, that is, computing
S3mod N and verifying that this gives M. Second, they
suggest choosing the values f1, fo," -, fk. 91,92, - -, g& such
that f; = ¢; (mod 2) for every .

This latter suggestion certainly defeats the attack described
earlier. However, it is not secure against the following naive
attack. Suppose the main objective of the auxiliary processor is
to obtain fraudulently the smart card’s signature on a message
of its own choosing. If the message the auxiliary processor
wishes to have signed is X, then, when requested for the
values M% mod N, the auxiliary processor instead supplies
X% mod N for every 7. The signature output by the smart card
will then be simply X¢mod N, as required by the auxiliary
processor.

The only way to defeat this latter attack is for the smart
card to have some means of checking either the information
provided or the final signature. The latter seems easier since
we have already assumed that the public RSA exponent is
always 3, making the first proposal of Shimbo and Kawamura
the obvious choice. This conclusion leads naturally to the topic
of the next section, namely Gollmann’s attack.

IV. GOLLMANN ATTACK AND POSSIBLE REMEDIES

A. Preliminary Remarks

The Gollmann attack [1] arises out of the need for the smart
card to check signatures before releasing them. Following
such a check, the smart card will be faced with two possible
scenarios.

* The signature is correct, in which case it should be issued

from the smart card as required.

* The signature is incorrect, in which case the supplied val-
ues z; should be rejected and the signature not output (lest
it reveal information to a malicious auxiliary processor).

Therefore, it seems inevitable that the auxiliary processor
will always be aware of whether the values z; supplied to the
smart card result in the correct signature.

This observation then leads to Gollmann’s attacks on the
RSA-S1 and RSA-S2 protocols. We consider these attacks and
possible countermeasurs separately below.

B. RSA-S1
We need to consider two possible cases.

1) Suppose the auxiliary processor supplies the smart card
with correct values for z; for all values of 3 except for
i = j, in which case it provides z; = —M% mod N.
Using the supplied values, the smart card will actually
compute

k
S=[](z)" = (1) M? (mod N).

=1

That is, the smart card will compute the correct signa-
ture, if and only if

fi =0 mod2).

2

~

Suppose the auxiliary processor supplies the smart card
with correct values for z; for all values of i except for
¢ = j, in which case it provides z; # +M% mod N.
Using the supplied values, the smart card will actually
compute

k
S = [[(z)f = (M%) M? (mod).

i=1
That is, the smart card will compute the correct signature
if and only if

(ziM~%)i =1 (mod N).

Given that 2; # £M% mod N, the probability of the
preceding equation being satisfied with randomly chosen
zj is vanishingly small unless

fi=o.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

Using these two possible means of attack, it is therefore
impossible to prevent a conspiring group of malicious auxiliary
processors from discovering whether 1) f; = 0 (mod 2) and
2) fj =0forany j(1 < j < k).

The best option for the system user wishing to counter
this attack would appear to be to choose f; odd for every
3,1 < ¢ < k, in which case neither condition 1 nor 2 above
would be true for any (1 < i < k). This would have the
effect that any attempt to deceive the smart card would be
detected; that is, every time false data are presented to the
smart card it results in an incorrect signature, and resultant
rejection of the data supplied by the auxiliary processor.

This means that, for the cryptanalyst attempting to determine
f1, f2y-++, fr (and hence d), only 2¢=! values will need to
be tried instead of 2°. Thus the size of the search space
for the cryptanalyst effectively becomes 2(c—1* instead of
2°*. However, this reduction in search space size is of minor
significance by comparison with the effect of the divide-and-
conquer attack on RSA-S1 described in Section V.

C. RSA-S2

As with RSA-S1, we need to consider two possible cases.

1) Suppose the auxiliary processor supplies the smart card
with correct values for z; for all values of 5 except for
¢ = j, in which case it provides z; = —M% mod N.
Using the supplied values the smart card will actually
compute

k
Sp =[] = (1) M? (modp)
=1
k
Se=[](z)* = (1) M? (modq)
i=1
and then the signature S will be derived as
S = (Spwp, + Syw,) mod N.

This means that the computed signature S will satisfy

S = (-1} me (mod p)
and

S=(-1)%M? (modg).

That is, the smart card will compute the correct signa-
ture, if and only if

fi=g; =0 (mod?2).

2) Suppose the auxiliary processor supplies the smart card
with correct values for z; for all values of i except for
¢ = 4, in which case it provides zj # £M% mod N.
Using the supplied values the smart card will actually

BURNS AND MITCHELL: SERVER-AIDED RSA COMPUTATION SCHEMES

compute
k
S, = H(zi)fl = (z;M~%)iM? (modp)
i=1
k
Se = H(zi)g' = (z;M~)9 M? (mod q)
i=1

and then the signature S will be derived as
S = (Spwp + Sqwg) mod N.
This means that the computed signature S will satisfy
S =(z;M~4)iM? (modp)
and

S = (ZjM_dJ)ngd (mod g).

That is, the smart card will compute the correct signa-
ture, if and only if

(z;M~%)5 =1 (modp)
and
(z;M~%)9 =1 (modg).

Given that z; # £M% mod N, the probability of
the preceding equations being satisfied with randomly
chosen z; is vanishing small unless

fi=g;=0

Using these two possible means of attack it is, therefore,
impossible to prevent a conspiring group of malicious auxiliary
processors from discovering whether 1) f; = g; = 0 (mod 2)
and 2) f; = g; =0forany j(1 < j<Ek).

The best option for the system user wishing to counter this
attack would appear to be to choose f; and g; so that at most
one of them is even for every i (1 < ¢ < k); that is, neither
condition 1 or 2 above can be true for any i (1 < i < k).
This would have the effect that any attempt to deceive the
smart card would be detected; that is, every time false data are
presented to the smart card it results in an incorrect signature,
and resultant rejection of the data supplied by the auxiliary
processor. There appear to be two main approaches to doing
this.

1) Suppose that f1, f2,- -, fr and g1, g2, - - - , g are chosen
at random subject to the constraint that at least one
of f; and g, is odd for every j(1 < j < k). This
means that, for the cryptanalyst attempting to determine
f1, fay -+, fr (and hence d,, and d) it holds that f; =1
(mod 2) with probability 2/3; that is, the entropy of the
least significant bit of f; is

(log, (3) + 2log, (3/2))/3 = logy (3) — 2/3 ~ 0.9183.

Thus, the size of the search space for the cryptanalyst
effectively becomes 2(¢~0-0817)k instead of 2°*. To see
the effect of this reduction we tabulate (¢ — 0.0817)k
(i.e., the effective “number of bits of security”) for some
typical values of ¢ and k (see Table I).

167

TABLE 1
EFFECTIVE NUMBERS OF BITS OF SECURITY

{c— 00810k
58.8
61.4
62.7
63.3
3.7
63.8

wl o
iw-&?"

=N

f\‘ga‘oo.h‘wwa
8o| | 00

2) An alternative approach appears to avoid reducing the
effective system security below 2¢¢In this approach,
we again choose fi,f2,---.fr and g1,g2, -, gx at
random, this time subject to the (more restrictive!)
constraint that for every j exactly one of f; and g; is
even (and exactly one is odd).

Paradoxically, this would appear to make work for

the cryptanalyst just as difficult as if fy, fa,---, fr and
g1, 92, - -, gx, Were chosen at random with no constraints
at all! Of course, work is made simpler for anyone
attempting to discover f1, fo. -, fr and g1,92, -, gk
simultaneously, but there is little point in making such
an attempt since knowledge of fi, fa,-- -, fi alone will
easily reveal d (as discussed in Section VI-B-1).
It is also curious that this method of choosing
fi.fo, -+, frand g1, g2, - - -, gk is precisely the opposite
of one of the means suggested by Shimbo and
Kawamura [7] for preventing the original malicious
auxiliary processor attack (see Section III). Hence, not
only does Shimbo and Kawamura’s suggestion fail to
prevent auxiliary processor attacks, it actually is the
converse of what is required!

It would appear that the second of the preceding two
options is the best to follow, given that it defeats Gollmann’s
attack without reducing the effective security of the system.
Note also that this gives an additional advantage for RSA-S2
over RSA-S1, since Gollmann’s attack on RSA-S1 cannot be
counteracted without reducing overall system security.

V. DIVIDE-AND-CONQUER ATTACK ON RSA-S1

Next, we present a simple yet very effective attack, due to
Wiener, on the security of the RSA-S1 protocol that essentially
makes it much less practical to use. However, a similar attack
on RSA-S2 has yet to be found.

After a single use of the RSA-S1 protocol, an untrustworthy
auxiliary processor (or any cryptanalyst party to the commu-
nications between the smart card and the auxiliary processor)
will be equipped with a set of values dy,ds,---,dg. These
values have the property that

d = fidi + fada + -+ + frdi (mod A(N)),

where d is the smart card secret exponent and f1, fo,- -+, fk
are also known only to the smart card. The attacker will also
know e (the public exponent) and N (the RSA modulus). For
the sake of simplicity, we assume that k is even, say k = 2£.
The attack we describe allows the attacker to deduce the values
of f1, fa. -+, fx (and hence d) in at most 2(¢~D*/2+1 trials,
that is, effectively reducing the “number of bits of security”
by approximately 50%.

168

Before describing the attack we need some notation. Let
Fy be the set of all possible values for the parameters
fl!f?)"'vfla that iS,

Fr={(g1,92,--+,9¢):0 < g: < a}.
Then |Fi| = 2, so label the elements of F}

80,81, ,82ce_1-

Let F, be the set of all possible values for the parameters
fes1, feva, -+, fae, that is,

Fy = {(ges1, 9642, -, 92¢):0 < g; < a}.

Then, |Fy| = 2°, so label the elements of F,

h01h17' . '7h2¢1—1'

The attacker now proceeds as follows.

1) Choose a message m at random, and compute z =
m®mod N.

2) Compute w =
Algorithm).

3) For each g; € F1,8: = (91,92, -, g¢) say, compute

¥ = mwSrditgzdetotaede g .

z7'mod N (e.g., using the Euclidean

Store these results in some form by which they may be
accessed easily by the values of y; (e.g., either sorted
by these values or stored in a hash table).

4) For each h; € Fy, h; = (gey1,9e42,- -, 920) say,
compute

zj = xgz+1de+1+gz+2d£+2+“-+gzed2l mod N.

5) Then check to see if there exists a y; such that Z; = Yi
(this is straightforward since we assume that the values
y; are stored in a form where this type of check is
simple, for example, in a hash table). If so then do
the following: Suppose g; = (g1,92,---,9¢) and h; =
(9e+1, ge+2,- -+, g2¢). Then compute and store

8 = gidy + gada + -+ - + grdi.

At the end of the preceding procedure the attacker will have
a set of values §;, and it is straightforward to check that one of
these will be congruent to d modulo A(N'), which is essentially
equivalent to knowing d. Hence the attacker needs to perform
only 2a%/2 = 2°%/2+1 exponentiations and a*/2 comparisons
to be guaranteed to discover the RSA secret key.

In fact, the situation is a little worse than this, since, to
defeat the attack described in Section IV-B, we have already
assumed that f; is odd for every ¢ (1 < 7 < k). Hence the
sets F1 and F need contain only |a/2]%/? entries, and so
the attacker needs to perform only 2[a/2|*/2 = 2(c-1k/2+1
exponentiations and |a/2]%/2 = 2(c—D*/2 comparisons to be
guaranteed to discover the RSA secret key.

This means that, for the cryptanalyst attempting to determine
f1, f2,- -+, fr (and hence d), only 2(c—D*/2+1 checks will
need to be performed instead of 2°*. Thus the size of the search
space for the cryptanalyst effectively becomes 2(c—1)%/2+1
instead of 2°*. Hence, for RSA-S1, one must choose ¢ and %

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

larger than would otherwise be the case to compensate for this
reduced freedom in choosing the values fy, fo,- -, fr—this
point is discussed in more detail in Section VI-B-1.

V1. CHOICE OF PARAMETERS

A. Complexity of Algorithms

We start by reviewing the complexity of the algorithms in
terms of the expected number of calculations the smart card
will be required to perform.

Theorem 6.1: Using the RSA-S1 Protocol, and assuming
that f; = 1 (mod 2) for every ¢, a single modular exponen-
tiation will require the smart card to perform the following
expected number of modular multiplication operations (mod
NY):

3(c—1k/2+ 2"k — 1.

Proof: We start by assuming that, apart from being
odd, the values of f; are selected randomly; this is a good
assumption since this will maximize the work involved for the
cryptanalyst in computing d from the values of dy, ds, - - -, di.
Since every f; is odd, it follows that f; # 0 for every 4, and
hence the total number of modular multiplications will be k—1.

Within each exponentiation calculation (assuming the use
of right-to-left square-and-multiply), the number of multipli-
cations will be w — 1, where w is the number of ones in
the binary representation of f;, and the number of squaring
operations will be 4 — 1, where A is the length of the binary
representation of f;. The expected value of w is simply

2¢71 g

>

=0

wt(2j + 1)/2‘3*1 =(c+1)/2

(where wt(i) denotes the binary weight of i). The expected
value of A is given by

bi(2j + 1)/20-1 =) iy 1/2’3—1

=2

2¢-1 1

>

=0

(where bl(i) denotes the binary length of 4). If we let

c
R(c) = i2"™?
1=2
then it trivially follows that
R(c) = R(c—1) 4 ¢2¢72,
Hence, (by induction) it is simple to show that
R(c) = (c—1)2¢71,

Using this it should now be clear that the expected value of
h is simply ¢ — 1 + 2'~°. Hence, the expected number of
operations in each exponentiation operation is

3c/2 - 5/2 + 21,

Hence the overall total for the expected number of modular
multiplications is

k— 1+ 3kc/2 - 5k/2 + 21k,

BURNS AND MITCHELL: SERVER-AIDED RSA COMPUTATION SCHEMES

which simplifies to
3(c—Dk/2+2" %k — 1.

and the proof is complete. O

Theorem 6.2: Using the RSA-S2 protocol, a single modular
exponentiation will require the smart card to perform the
following expected numbers of operations:

3ck — dk(1 - 27°) +27F — 2

modular multiplications (mod p or mod ¢) together with
2k(1 — 27) modular reductions (from mod N to mod p or
mod g¢), two modular multiplications (mod N), and a single
modular addition (mod N).

Proof: We start by considering the computation of Sp.
that is, the computation of

k

H(zl)f‘ mod p.

=1
As before, we assume that the values of f; are selected
randomly.

The probability of any particular parameter f; being zero
is 27¢: hence, the expected number of nonzero elements in
the set F = {f1, f2, -+, fu} 18 k(1 —27%). Now the total
number of modular reductions from mod N to mod p that will
need to be performed will be exactly equal to the number of
nonzero elements in F. Similarly, the total number of modular
multiplications will be precisely one less than the number of
nonzero elements in F, unless all the elements in F* are zero.

Hence, the expected number of modular reductions from
mod N to mod p is

k(1 —279),

and the expected number of modular multiplications (mod p)
into the partial product is

k(1—27°) — 1427

Within each exponentiation calculation (assuming the use of
right-to-left square-and-multiply), the number of multiplica-
tions will be w — 1, where w is the number of ones in the
binary representation of f; (except if fi = 0 when we set
w = 1), and the number of squaring operations will be h — 1,
where A is the length of the binary representation of f; (again
except if fi = 0 when we set h = 1). The expected value
of w is simply

201

S owi(i) + 1/2C =c¢/24+2°°

i=1
[where wt(i) denotes the binary weight of i]. The expected
value of h is given by

2¢—1 c
> bl(i)+1/2” =S it 1/2“
=1 =1

[where bl(i) denotes the binary length of 1. If we let

c

S(e) = 2!

i=1

169

then it trivially follows that
S(c) = S(c—1) + 27"
Hence (by induction) it is simple to show that
S(c)=(c—1)2°+1.

Using this it should now be clear that the expected value of h is
simply c—1+ 2l=¢_ Hence the expected number of operations
in each exponentiation operation is

3(c/2—1+27°).

Hence, the overall total for the expected number of modular
multiplications (mod p) is given by

3ck/2 — 2k(1—27¢) +27F = 1.

Given that the computation of S, has a similar complexity the
result follows. O

B. Choice for o and k

The preceding results will help us with the selection of these
two fundamental parameters. First, we note some other vital
considerations regarding the choice of these two values.

1) Elementary Lower Bound: For RSA-S1, it is clearly
necessary for the values k and a to be chosen so that it is
infeasible for any cryptanalyst to deduce d from knowledge
of dy,do,---.dy alone. In general, if the only information
the cryptanalyst has is di1, da, - -, dy and the value of a (the
upper bound on the values of fi, fa, -+, fx) then, using the
divide-and-conquer attack described in Section V, there will
be 2|a/2)*/? exponentiation operations to perform. Hence,
we require that

2|a/2]F/? > 254

If, as before, we assume that ¢ = 2°, then this inequality
becomes

(c— 1)k > 126.

For RSA-S2 the situation is a little more complex. We are
now dealing with two values, that is, d, and dg, the value of
which to the cryptanalyst is not so obvious. However, we now
show that knowledge of just one of these values is sufficient
to enable a cryptanalyst to factorize N.

Suppose a cryptanalyst has by some means obtained the
value of dp. Then

3d,=3d=1 (modp-—1),
that is, p — 1{3d, — 1. Now, by definition, d, < p— 1. Hence,
3d,—1 < 3(p—1), and thus 3d, — 1 is either p— 1 or 2(p—1).
Hence, given d,,, one simple test will reveal p, and thus N is
factored.

This means that it is necessary to make it as difficult to
deduce d,, or d, from d;. do. ..., dr and a as it was to deduce

170

TABLE 11
SMART CARD COMPLEXITIES OF RSA-S1 AND RSA-32
k 64 32 16 8 4 2
¢ (for RSA-S1) 3 5 9 17 33 64
RSA-51 complexity 207 193 191 191 191 188
¢ (for RSA-52)] 2 4 8 16 32
RSA-S2 complexity {{ 62+64 [94+48 | 130+30 [158+16 | 174+8 | 182+4

d from dy,dy, - - -, dy and @ in the RSA-S1 algorithm. Hence,
similar to RSA-S1, we require that

ak Z 264’
that is,
ck > 64.

Note that the preceding analysis differs from that given by
Matsumoto et al. [4], where it is incorrectly assumed that the
cryptanalyst will need to find both d;, and d, to deduce d.
Before proceeding observe that, although the preceding
attack relies on the value of the public exponent e being
3, knowledge of d, can always reveal the factorization of
N, regardless of the value of e. This can be seen from the
following well-known analysis.
Choose any value m and compute X = m*~! —1mod N.
Then, since dye = 1 (mod p — 1), that is, (p — 1)|dpe ~ 1,
we immediately have p|X. Given that d, # d (mod ¢ — 1)
(a reasonable assumption since otherwise d, would be a valid
secret key), the probability that (X, q) = 1 will be high. The
cryptanalyst then will be able to simply derive p by using the
Euclidean algorithm, since if (X, q) = 1 then (X, N) = p.
2) Tabulating Complexities: For the purpose of minimizing
the work done by the smart card, suppose that ¢ and k are to
be chosen so that the cryptanalyst has 264 possibilities to try.
This means choosing ¢ and k so that either (c — 1)k = 126 or
ck = 64 (for RSA-S1 and RSA-S2, respectively). For the
possible values of ¢ and k that result, Table II shows the
computational load for the smart card in computing a single
signature using RSA-S1 and RSA-S2 (by Theorems 6.1 and
6.2). For RSA-S1, the number given is the number of modular
multiplications mod NN. For RSA-S2 the complexity is given
in the form a + b, where a denotes the number of modular
multiplications mod p or ¢, and b denotes the number of
modular reductions from mod N to mod p or ¢g. Note that
for RSA-S2 we have ignored the two mod N multiplications
and the single mod N addition. From Table 11, it should be
clear that, for RSA-S2, the best choice from the point of view
of smart card computation is ¥ = 64 and ¢ = 1 (i.e., every f;
is either 0 or 1). For RSA-S1, however, all choices give much
the same smart card complexity.
To compare the two algorithms, first we make two obser-
vations.
* A modular multiplication mod p or ¢ will take somewhere
between one-fourth and one-half of the time required for
a modular multiplication mod N.

¢ The time required to perform a single modular reduction
from mod N to mod p or ¢ should be substantially less
than (say of the order of 50%) the time required for a
single modular multiplication mod p or q.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

By examining the table, it should now immediately be
evident that RSA-S2 offers superior performance to RSA-S1
for all values of ¢ and k. Before proceeding observe that, in
suggesting choices for a(= 2¢) and &, we have so far ignored
two aspects of the signature computation, namely,
1) The computational load on the auxiliary processor, that
is, the & modular exponentiations required to compute
2,1 < i < k.

2) The communications overhead in transferring the values
zi,1 < ¢ < k, from the auxiliary processor to the smart
card. .

In both cases the work factor is directly proportional to k.
Unfortunately, & is maximized when we attempt to minimize
smart card computations for algorithm RSA-S2,

The first problem, that is, the computation of 21, 22, - - -, 2&,
can be mitigated by careful selection of the values
dy,d2,---,dg, as discussed subsequently. However, the

communications overhead is inescapable, and unless the
communications channel between the smart card and the
auxiliary processor has sufficient bandwidth, the final choice
of a and %k will be subject to an appropriate tradeoff between
communication time and smart card processing time.

C. Choosing the Values dy,ds, - -, dy.

We now consider what general strategies might be used
to choose the values dy,dg,---,dk, f1, f2, -+, fx, and (for
RSA-S2) 91,92, -, gr. We must bear in mind two potentially
conflicting constraints.

* We must choose the values d,,ds, - - -, di. to minimize the
work load on the auxiliary processor. One way this might
be achieved is by choosing most of these values to be
relatively small.)

* The probability of collisions (defined subsequently) must
be kept sufficiently small so that the secrecy of the RSA
secret key is not compromised.

Some specific algorithms for choosing these parameters for
both RSA-S1 and RSA-S2 are given subsequently. In each
case, the constraints necessary to defeat Gollmann’s attack
(see Section IV) have been built into these algorithms; that
is, that f; = 1 (mod 2) for every ¢ (for RSA-S1) and that
fi = g: + 1 (mod 2) for every i (for RSA-S2).

1) Collisions: Before proceeding, we define what we
mean by a collision, and in doing so we will show why
these two constraints are potentially in conflict. Given a set
di,ds, -, dx, a collision is said to occur when two different
sets of values f; yield the same value ¥, f;d;. Consider
the set

i=1

k
S = {Z fidimod A(N):0< f; < a— 1}.

Depending on the values of d,ds, - -
most a® values.

Now, as has already been mentioned, it is sometimes
convenient to choose the values dy,ds,---,d; so that most
of them are relatively small. More specifically, suppose that
most of the values dy,ds,- -, d are chosen at random from

-, dk, S will contain at

BURNS AND MITCHELL: SERVER-AIDED RSA COMPUTATION SCHEMES

the range [0,2" — 1] for some h. In this case the expected
size of S will get closer to a* as h increases, that is, the
expected number of collisions will decrease as h increases.
Hence the probability that an “incorrect” set of values f; will
yield the “correct” d will also decrease as h increases. If the
probability of such an event is high, then the overall security of
the scheme will be reduced, since this will reduce the expected
size of the search space for anyone trying to find d using only
the specified values of dy,ds,---,d; and a.

Hence, if the values of di,ds, - -, dy are restricted in this
way, then either A must be chosen so that the probability
of collision is at an acceptably low level, or the values
di.ds, -, dr must be specially chosen to avoid such colli-
sions.

2) Strategy A: For RSA-SI1 the simplest strategy is to
choose all but one of the values dy,ds. -, dx (d; say) at
random; in addition, the accompanying values of f; are also
chosen randomly from the range [1,a — 1] [subject to the
constraint that f; = 1 (mod 2)]. The value of f; is chosen
randomly from the set of integers in the range [1,a — 1] which
are relatively prime to A(NV), and d; is set to whatever value
is necessary to ensure that ©¥_, fid; = dmod A(N)). More
formally, this simple strategy for RSA-S1 has the following
three steps:

1) Choose the integer j at random from the range 1, k] and
choose f; at random from the range [1.a — 1] subject
to the condition that f; be coprime to A(/V) (and hence
f; must certainly be odd).

2) Forevery i(i=1,2,---.k.i # j) choose f; and d; at
random, subject to the constraints 1 < f; < a—1.f; =1
(mod 2),and 0 < d; < N — 1.

3) Set

k
dj= [d="" fidi |(f;)"" mod A(N).
%

Observe that requiring f; to be coprime to A(/N) ensures
that (f;)~! mod A(N) exists.

A corresponding strategy for RSA-S2 involves choosing
all but two of dy,ds,---,d) at random, together with their
corresponding values of f; and g;. More formally, it has the
five steps listed below. First, it is necessary to choose an
integer M; M must be at least as large as any possible p or g.
Typically M will be a little larger than V'N.

1) Choose the integer u at random from the range [1.4].
Then choose f, at random from the range (1.a — 1]
subject to the condition that f, is coprime to A(V) (and
hence f,, must certainly be odd). Set g, = 0.

2) Choose the integer v at random from the range {1, k] with
the constraint that v # u. Then choose g, at random
from the range [1,a — 1] subject to the condition that
g, is coprime to A(NV) (and hence g, must certainly be
odd). Set f, = 0.

3) Foreveryi(i=1,2,---,k.i # u,i # v) choose fi,gi.
and d; at random, subject to the constraints 0 < f; <
a—1.0<g;<a-1.f;# g (mod2),and 0 < d; < M.

171

4) Set
k
dy=|dp = fidi |(fu) ' modp - 1.
Zu
5) Set
k
d, = dq_zgidi (gu)_lIIlOdq_l'
i=1

i#EU

Observe that requiring f,, to be coprime to p — 1 and g, to
be coprime to ¢ — 1 ensures that (f,)~' mod p—1 and (g0)7t
mod ¢ — 1 exist. Note also that if ¢ = 1, that is, ¢ = 2, then
fu and g, will always be I.

While these simple strategies clearly work, they result in a
large work load for the auxiliary processor, which, in the case
of RSA-S1, will be required to perform k “full-size” mod N
exponentiations, and in the case of RSA-S2 will be required
to perform k “half-size” mod N exponentiations (i.e., with
exponents of the order of VN). If k is large, for example,
k = 64, then this may be an unacceptably large load, and
we therefore consider two alternative strategies that ease the
computational load on the auxiliary processor.

3) Strategy B: The first alternative we consider is to choose
most of the values di.ds, - - - . di to be small, thereby making
the computation of the values 21,22, -, 2 easier. The sim-
plest version of this alternative for RSA-S1 is to choose all but
one of the values d; at random from a restricted range, [0,]
say, and then, as before, to choose the last value to make the
sum correct. This involves modifying step 2 of Strategy A for
RSA-S1 to the following:

2) for every i(i = 1,2,---.k.i # j) choose f; and d; at
random, subject to the constraints 0 < f; <a—1,f; =1
(mod 2), and 0 < d; < 7.

A similar change can be made to Strategy A for RSA-S2,

in this case involving a change to step 3:

3) Forevery i(i = 1,2,---.k,i # u,i # v) choose fis Gis
and d; at random, subject to the constraints 0 < f; <
a—1,0< g, <1-1,fi #g;(mod2),and 0 < d; <7

This approach has problems however—in particular, note
that if the range is made too small then the collision probability
may be so high that the expected work load required for
the cryptanalyst to compute the secret RSA key is reduced
significantly, thereby reducing the overall system security.

Strategy C: A more promising approach is the following
(which guarantees that the collision probability is minimized).
The idea stems from the observation that, since dy,ds, -+ -, dk
are public, there is little reason to make them random—it
is the values fi.fs.---,fx (and, in the case of RSA-S2,
g1.g2.- - gr) that need to be unpredictable. Computations
for the auxiliary processor will then be simplified if most of
the values d; are multiples of one another.

The simplest form of the idea is as follows. First, dy is
chosen at random. Next, for i satisfying 2 < i < k — 1,d; is
chosen so that d; = s;d;_; for some small integer s;. Finally,
dy is chosen to make the sum add to d.

172

The preceding scheme has two advantages over Strategy A:

* First (in common with Strategy B), it makes the compu-
tation of the values z; much simpler, since (for 2 < ¢ <
k — 1) z; can be computed as

zi = M% = M*%-1 = (,_,)% (mod N).

* Second, given suitable choices for the multipliers s;, colli-
sions can essentially be ruled out—a significant advantage
over Strategy B.
Typically, assuming that a = 2¢, one could choose d; to be
any value less than Ny/ 2°% where Npis the minimum possible
value for A(N), and 83 = s3 = -+ = s,_1 = 2°. Assuming
this choice, Strategy C for RSA-S2 is then as follows (note that
the corresponding Strategy C for RSA-S1 should be clear).
1) Choose d; at random from the range 2 < d; < Ny /2%
[where, as before, Ny is the minimum possible value
for A(N)].

2) For2<:< k- 2, let d; = 2°d;_;.

3) For 1 <4 < k—2, choose f; and g; at random, subject
to the constraints 0 < f; < 2°-1,0< g; < 2°—-1,
and f; # g; (mod 2).

4) Choose fr_; at random from the range [1,2°—1] subject
to the condition that f;_; is coprime to A(V) (and hence
fr—1 must certainly be odd). Set gr_; = 0.

5) Choose g at random from the range [1, 2¢ 1] subject
to the condition that g is coprime to A(N) (and hence
g, must certainly be odd). Set f, = 0.

6) Set

dip_1 = (d —Eﬁ 1) fec1) 'modp — 1.

7) Set

di = (d —Zg, 1)(gk 1modq—l.

5) Other Possible Strategies: At the cost of extra work for
the auxiliary processor, hybrid strategies could be produced
wherein some of the values d; are chosen at random (as in
Strategy A) and some are chosen either small (Strategy B) or
as multiples of other values (Strategy C).

6) Comments and Security Considerations: It should be
noted that, in all three of the strategies described earlier, a
cryptanalyst equipped with the values dy,ds, - -, d; will (at
least in theory) have less than 2(c—D*/2+1 pogsibilities to try
to discover d for RSA-S1, and less than 2% possibilities to
try to discover d for RSA-S2. We start by considering how
this occurs for RSA-S1.

For each of the three strategies there is a “special” value
among f1, f2.+ -+, fr—f; say—which must be chosen so that
f] exists modulo A(V). However, since the cryptanalyst will
not know A(N), and since the cryptanalyst knows that fiis
odd for all i, it is not clear that this information is of any
additional value to the cryptanalyst even if j is public.

For RSA-S2 the situation is rather more complex. There are
now two Specjal values among fla fZa Ty fk,glag2; BRERL
—fu and g, say—which must be chosen so that 7t and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

TABLE III
RSA-82 SMART CARD COMPLEXITY (64 BITS OF SECURITY)
c 1 2 4 8 16 32
k 66 34 17 9 5 3
no. of bits of security 64 65 63 63 63 63
smart card complexity || 64466 | 100451 | 138+32 | 178+18 | 218+10 | 27446

g, ! exist modulo A(N). In addition f, and g, must satisfy

fo = gu = 0.

In Strategy A the cryptanalyst will have no means of
knowing the values of w and v, and hence will have only the
information that at least one of the values f;, fa,- -, fi is odd
and at least one is zero (similarly for the values g1, g2, -, gk)
Given k is not too small, this information again appears to be
of relatively little value to the cryptanalyst and does not seem
to reduce the effective security of the system. However, for the
other two strategies, the values of « and v cannot be hidden,
and hence the effective security of the system will be reduced
by an order of 2°*1. The easiest way of ameliorating this
effect is to increase the value of k by one or two. To illustrate
the slightly increased smart card work load involved, Table
III presents the smart card complexity for RSA-S2 for various
parameter choices giving an effective “64 bits of security” for
Strategies B and C (amending the values given in Table II).

Finally, we should note that all the preceding strategies, and
in particular Strategy C, may be subject to attacks of a type
we have not anticipated here. For example, before any such
scheme is used, additional research of the type described in
Section VIII needs to be performed.

VII. IMPLEMENTATION CONSIDERATIONS

Other problems associated with the algorithms present them-
selves when implementation is considered. Of particular con-
cern is how information may leak to the auxiliary processor
regarding the values of fi, f2, -, fr (and, in the case of
RSA-S2, g1,92,---,9x)- First, we must consider how the
preceding schemes might operate in practice. We have as yet
not discussed how the information computed by the auxiliary
processor (i.e., 21,22, -, 2x) is processed by the smart card.

One possible approach would be for the auxiliary processor
to supply one z; value at a nme waiting at each stage for
the smart card to compute z * (and, for RSA-S2, zy“) and
to multiply this value into the partial result. This has the
advantage of minimizing the amount of information the smart
card needs to store at any one time; this could be essential
to the practicality of the protocol since smart cards typically
have very limited amounts of onboard memory.

However, this approach also has serious security short-
comings. The amount of computation involved at any stage
will depend on the value f; and (g;). Thus, by monitoring
the interval between requests for values z;, the auxiliary
processor could gain valuable information about the secret
values, thereby potentially compromising the value of d itself.

Clearly, the ideal solution would be for the smart card to
store all the values z1,23,---,2; simultaneously. The only
information that could possibly be revealed to the auxiliary
processor would then be the total duration of the computation,
a relatively small amount of information. However, this ap-

BURNS AND MITCHELL: SERVER-AIDED RSA COMPUTATION SCHEMES

proach may not be practical because of the limited memory
on the smart card.

An alternative approach would be to require the smart card
to apparently spend the same amount of time on each stage
of the computation; this could be achieved simply by the
addition of “idle time.” This would require each stage of the
computation to take as long as the maximum possible time
for such a computation, a potentially considerable overhead
that could potentially reduce throughput by up to 50%. If
the smart card is very limited in its memory capacity, this is
likely to be the best available solution to this problem; other,
more sophisticated schemes, such as the Quisquater-De Soete
scheme [6], although they solve this problem, are much less
efficient. However, in practice it would appear that typical
current smart cards are capable of storing a number of values
2;, and although some idle time may still be necessary, it will
be small compared with the total computation time.

Other possible implementation-based attacks include the
possibility of the auxiliary processor monitoring the power
consumption of the smart card, thereby possibly detecting any
smart card idle time that may be present to conceal precise
timings from the auxiliary processor. This, together with other
potential attacks of this type, requires additional investigation.

VIII. SOME RESEARCH PROBLEMS

Certain questions raised herein lack definitive answers, and
the underlying problems need additional investigation. Indeed,
final decisions as to the choice of algorithm and parameters
require some of these questions to be answered, and such
additional work is, therefore, of considerable importance. We
conclude this paper by discussing three of these problems in
a little more detail.

1) The first problem relates to a fundamental assumption of

both algorithms discussed herein. That is, releasing some
information about the secret exponent d. for example,
that it belongs to a set of size 254, does not compromise
the security of the RSA scheme. Of course, if the
values dy,ds, -, dy are chosen at random, then the
information released regarding the value of d is not
manipulated easily.
However, as discussed earlier, for implementation rea-
sons, it is potentially attractive to choose the values
di,dy, - - -, dy so that either most of them are relatively
small or they have a special form. This leads to the
question: If d is known to belong to a small range or
is known to be an element of a specified restricted set,
how much will this compromise the secret key? In the
context of RSA-S2, two obvious possibilities for such
a compromise come to mind (similar possibilities exist
for RSA-S1).

o The first possibility is that a generalized version
of Wiener’s attack [8], briefly discussed in Section
11-C, may be possible.

¢ The second possibility stems from the observation
that, given the public exponent is 3, information
can be derived about the possible values of d,
and d,. The possibility exists that the resulting

2)

3)

173

inequalities could be combined with knowledge
of the sets to which d, and d, belong to reveal
the value of d. We consider the argument for dy;
similar arguments hold for d.

As previously, since 3d, = 1 (mod p — 1), we
have

(p— DIBdp — 1)

By definition, d, < p = 1 and hence 3d, — 1 <
3(p—1); that is, 3d, — 1 is either p—1 or 2(p-1).
In the first case, this means that

d, =p/3
and, in the second case, it means that
dy, = (2p—1)/3.

The first case cannot occur since p is prime, and
hence we must have d, = (2p — 1)/3 [note that
p = 2 (mod 3) is necessary given that the public
exponent is 3].

As before, p and ¢ will normally lie between fixed
bounds; typically it might be publicly known that
p satisfies

9252 4 | < p< 226 1.

This immediately translates into a range of values
for d,, that is,

(22%% 4 1)/3) < d, <2%7/3 - 1.

In fact, the cryptanalyst will be able to deduce
tighter bounds on the value of p given knowledge
of N. It should be clear that p will lie in the range

max (22°%2, N/22%%) < p < min (2%, N/2%2),

giving further information regarding the value of
dp.

The second problem applies only to algorithm RSA-S2.
As a solution to Gollmann’s attack, it was proposed in
Section IV that fi, f2,---, fx and g1, g2, - -, gk should
be selected so that f; # ¢; (mod 2) for every i (1 < i <
k). It was stated that this does not appear to reduce the
security of the system against cryptanalytic attack. Two
things need additional investigation. First, careful check-
ing is required to ensure that the proposed constraint on
the selection of fi, fa.---, fx and g1,92, -, gk really
does not reduce security. Second, careful investigation
needs to be made into the possibility of producing
variants of Gollmann’s attack, that is, attacks based on
the auxiliary processor providing additional corrupted
versions of the values zy,z2,---.2 in the hope of
revealing information regarding the value of d.

The existence of the divide-and-conquer attack for RSA-
S1 (described in section V) raises the possibility that a
similar attack may exist for RSA-S2. Additional detailed
research is required to see if such an attack can be
devised.

174

ACKNOWLEDGMENT

The authors would like to thank M. Wiener for suggesting a
number of extremely important improvements and corrections
to the paper, including the attack described in Section V.
They would also like to thank S. Lloyd for providing the
analysis at the end of Section VI-B-1. The second author would
like to thank Hewlett-Packard Laboratories, Bristol, England,
for supporting much of the work involved in producing this
paper.

(1]
[2]

31
[4]

[5]

(6]

71

REFERENCES

D. Gollmann, private communication, Jan. 1991.

J. Hastad, “On using RSA with low exponent in a public key network,”
in Advances in Cryptology—CRYPTQ ’85 Proc., Santa Barbara, CA,
1986, pp. 403-408.

D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumer-
ical Algorithms, 2nd ed. Reading, MA: Addison-Wesley, 1981.

T. Matsumoto, K. Kato, and H. Imai, “Speeding up secret computations
with insecure auxiliary devices,” in Advances in Cryptology: CRYPTO
‘88, Proc., Santa Barbara, CA, 1990, pp. 497-506.

J-J. Quisquater and C. Couvreur, “Fast decipherment algorithm for RSA
public-key cryptosystem,” Electronics Letters, vol. 18, pp. 905-907,
1982.

J-J. Quisquater and M. De Soete, “Speeding up smart card RSA
computations with insecure coprocessors,” in Smart Card 2000, D.
Chaum, Ed. Amsterdam: North-Holland, 1991, pp. 191-197.

A. Shimbo and S. Kawamura, “Factorization attack on certain server-
aided computation protocols for the RSA secret transformation,” Elec-
tronics Letters, vol. 26, pp. 1387-1388, 1990.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

(8] M. J. Wiener, “Cryptanalysis of short RSA secret exponents,” IEEE

Trans. Information Theory, vol. IT-36, pp. 553-558, 1990.

John Burns graduated from Birmingham Univer-
sity with a degree in mathematics and applications.
He subsequently worked on various real-time and
communications products in Britain and the United
States before joining Hewlett-Packard’s European
Research Laboratories at Bristol, England. Since
being there he has worked in the areas of OSI
networking, network security, and office products.

Chris J. Mitchell received the B.Sc. and Ph.D.
degrees in mathematics from Westfield College,
London University, in 1975 and 1979, respectively.

Prior to his appointment as Professor and Head
of the Computer Science Department at Royal Hol-
loway, University of London, in March 1990, he
was Project Manager in the Networks and Com-
munications Laboratory of Hewlett-Packard Labo-
ratories in Bristol, which he joined in June 1985,
Between 1979 and 1985 he was at Racal-Comsec
Ltd. (Salisbury, U.K.), latterly as Chief Mathemati-

cian. His research interests are in information security, information theory,
and combinatorial mathematics.

