Timestamps and authentication
protocols

Chris J. Mitchell

Technical Report
RHUL-MA-2005-3
25 February 2005

Royal Holloway

University of London

Department of Mathematics
Royal Holloway, University of London

Egham, Surrey TW20 0EX, England
http://www.rhul.ac.uk/mathematics/techreports



Abstract

Timestamp-based authentication and key establishment protocols have re-
ceived a number of criticisms, despite their potential efficiency advantages.
The purpose of this paper is to propose a novel timestamp management
method which has the potential to increase the scope of applicability of such
protocols. Since timestamp-based protocols typically involve one less message
than challenge-response protocols, the potential efficiency gains are consid-
erable.

1 Introduction

As has been widely discussed in the literature, see for example chapter 10 of
[4], (entity) authentication protocols typically employ one of three types of
time variant parameters: timestamps, sequence numbers and nonces. Pro-
tocols based on timestamps or sequence numbers typically require one less
message than protocols based on nonces, and protocols based on the times-
tamps have the further advantage of being stateless', whereas the other two
types of protocol are not.

However, a number of problems with timestamp-based protocols have
been widely reported — see, for example, [2, 4]. One commonly reported
problem is the difficulty in ensuring that the clocks held by the communicat-
ing parties are securely synchronised. In particular it is normally assumed
that such protocols require there to be a reliable source of time within the
network, and for all parties to conduct regular secure resynchronisation ses-
sions with this reliable time source to ensure their clocks are correct.

In this paper we reconsider the issue of clock synchronisation and sug-
gest that the problems with such protocols may not be so serious after all.
In particular, the need for routine resynchronisation with a reliable time
source can be avoided. Note that this is potentially significant because, if
timestamp-based protocols become practical in a wider range of environ-
ments, considerable efficiency savings may be realisable.

2 Timestamps reconsidered

We start by making two key observations about timestamp-based authenti-
cation protocols. These observations are critical to our subsequent analysis.

LOf course, the maintenance of a clock value could be regarded as state information,
but it is typically provided by separate hardware and hence is not stored state in the
normal sense of the term



e Although it is necessary for the clocks held by a group of communicating
devices to be synchronised, it is not necessary for the clocks to be
correct. It is simply necessary that all the devices agree on the value
of the current time for the purposes of authentication.

e [f the clock values used for authentication purposes are only ever ad-
justed forwards, then replays of messages are prevented.

Note that the second observation is based on the assumption that the ‘nor-
mal’ safeguards are in place for the use of timestamp-based authentication
protocols. That is, we are assuming that the clocks used by the commu-
nicating devices are not precisely synchronised, but that each device can
safely assume that the differences in clock values are less than some thresh-
old value T. Moreover, there is also an assumption that messages sent from
one device to another are subject to a maximum transit delay of D. Then
the recipient of a message, with current clock value of t., will accept the
message as ‘fresh’ as long as the timestamp in the message (¢,, say) satisfies
te—T—D < t, <t.+T. This time acceptance interval, i.e. [t.—T —D,t.+T]|
is sometimes referred to as the ‘window of acceptance’. Then, in order to
detect message replays occurring within this window (and as in [1, 3, 4]), the
message recipient must retain copies of all messages received and accepted
within this window, and compare them with all newly received messages so
as to detect replays. Note that it is only necessary to store a hash of each
received message, and compare it with the hash of the newly received mes-
sage, where the hashes are computed using a collision-resistant cryptographic
hash-function (see, for example, [4]).

We can now describe how these observations can be used to implement
timestamp-based authentication protocols in a simple way, even when there
is no reliable source of time within the network.

3 A new implementation scenario

We start by making some assumptions about the operation of each device
within a group of communicating devices.

e We suppose that each device within a group of communicating devices
possesses a clock that is reasonably reliable (e.g. accurate to within a
few seconds a day). This is not an unreasonable assumption in many
scenarios; for example, many mobile network devices, including many
if not most mobile phones, and almost all PCs and electronic organisers
(personal digital assistants), have such a clock.



e We next suppose that a timestamp-based authentication and/or key
establishment protocol is used between pairs of devices within this net-
work. It is not important to the discussion here exactly how this proto-
col operates — indeed it could be based on shared secrets, e.g. using an
online trusted third party, or on public/private key pairs and an associ-
ated Public Key Infrastructure. We assume only that the protocol uses
timestamps to guarantee the freshness of messages, and that the proto-
col is designed in such a way that the recipient of a timestamped pro-
tocol message can guarantee its origin and integrity by cryptographic
means.

e We further suppose that each device maintains a ‘clock offset’ value,
used purely for the purposes of entity authentication and/or key estab-
lishment. Specifically, the time value used for security protocol pur-
poses is always the sum of the clock value and the clock offset value. If
the clock value is ever adjusted, then the clock offset value must also be
adjusted to ensure that the sum of the clock value and the clock offset
is never decreased. This would most easily be achieved by ensuring
that if the clock value is moved back by 0 seconds, then the offset is
simultaneously increased by ¢ seconds. To avoid unnecessary increases
in the sum of the clock value and the offset, we also suppose that the
offset is reduced by 0 seconds whenever the clock is moved forward by
0 seconds. Since, as we describe below, the clock offset value is never
reduced (except as described immediately above), the sum of the clock
value and the clock offset never decreases (cf. Section 2).

We now consider how a device uses timestamps within the authentication
(or key establishment) protocol. We separate our discussion into two parts:
receipt of messages, where the timestamp is used to decide whether or not to
accept a received message, and transmission of messages, where a timestamp
is generated and inserted into the message.

When a device receives a protocol message containing a (protected) times-
tamp, this timestamp is compared with the current clock value for the device
in the following way. Suppose the timestamp in the message is t,,, the cur-
rent clock value is t., the current clock offset value (stored within the device)
is t,, and T and D are as above. Then the message is accepted as fresh as
long as the following inequality holds:

te+to—T —D < t,.

Moreover, if t,,, > t.+t,, then t,, — t. —t, is added to the clock offset value.
When a device sends a protocol message containing a timestamp, this
timestamp is set equal to t. + t,.



4 Analysis and failure handling

We now consider how this timestamp management process provides the re-
quired freshness checking for protocol messages. First note that, as in Sec-
tion 2, we suppose that every device maintains a list of all messages received
with a timestamp t,, satisfying t.+t,—T—D < t,,. Assoon as the timestamp
t,, in a stored message no longer satisfies this inequality it can be discarded.
Every received message is compared with the current list of stored messages,
and discarded if it matches.

Since the value t.+t, never decreases, and given that T" and D are fixed, it
should be clear that once a message has been successfully received by a device,
any replay of this message will be rejected. This is the primary objective of
freshness checking. This has been achieved without any assumptions about
routine clock resynchronisation.

Of course, there is a danger that, if device A’s clock+offset value is sig-
nificantly in advance of the clock+offset value of device B, all messages sent
from B to A will be rejected. This situation could arise if there is no routine
clock resynchronisation and messages are sent between devices relatively in-
frequently. There are a number of ways in which this could be dealt with.
We mention two possible approaches.

1. The first solution would be for the recipient of any message which is
rejected because of an ‘old’ timestamp to respond to the message sender
with a cryptographically protected timestamp equal to t.+¢,. (This of
course assumes that the cryptographic keys necessary for such a transfer
are in place). When the sender of the failed message receives this
message, it will increase its clock offset appropriately, as in Section 3.

2. The second solution would involve the message recipient informing a
third party about the problem, e.g. a network management entity, who
would then send an appropriate message to the originating device, caus-
ing it to update its clock offset.

5 Hazards and countermeasures

We now consider how the scheme described above might go wrong.

e Clock failures. The first and perhaps most obvious problem we con-
sider is where the clock within one device in the network fails catas-
trophically. By catastrophically we mean that the sum of the clock
value and the clock offset is set equal to a very large value — some-
where close to the maximum possible. Every time this failed device

4



sends a message, the recipient will be obliged to reset its clock offset to
the largest possible value, and this situation may rapidly disseminate
across the network. Once the maximum clock value is reached, the
whole network will potentially fail.

There are a number of possible means that can be used to avoid such
a catastrophic situation. Firstly, we can impose restrictions on the size
of any increase in the clock offset value. If the difference is too large to
be credible, an error message can be generated and sent to either the
message originator or a network management entity (or both).

Secondly, we can modify the system so that clock offset values are
not routinely updated as described in Section 3. If the recipient of a
message (A say) finds that ¢,, > t. + t,, then there are two possible
cases. If ¢, —t. — t, is less than some defined threshold then no action
is taken by A (i.e. if the clock on the sending device is just slightly
ahead of the clock of A, then no adjustments are made). However, if
t,, —t. —t, is greater than the threshold value then A sends a request
to a trusted third party (TTP) for a time resynchronisation. This TTP
will respond with a cryptographically protected timestamp, which can
be used to update the clock offset of A.

In such a situation, if some of the network devices have clock values in
advance of this T'TP, then these devices will not be able to receive mes-
sages from other entities in the network. This problem could be avoided
by requiring such devices to conduct a nonce-based resynchronisation
with the TTP. In such a circumstance (and only in this situation) these
devices would be required to change their clock offset so that the sum
t. + t, is reduced.

Malicious clock manipulation. The clock failure scenario is essen-
tially an accidental ‘Denial of Service’ (DoS) attack. There are also
variants of this which may arise through deliberate manipulation of a
genuine member of a network. That is, a malicious entity could delib-
erately cause clock offsets to be systematically increased to ultimately
give rise to a DoS. If clock offset adjustments are size limited, then
the malicious attacker could bypass this protection by arranging for a
large number of smaller clock increments. However, the second counter-
measure to a failed clock prevents this attack, at the cost of increased
network traffic. (Note that the messages to the TTP could also enable
such attacks to be detected).

Postdated message (‘suppress replay’) attack. We now consider
a problem first described by Gong [2]. Essentially, suppose the clock

5



value added to the clock offset for device A is substantially ahead of the
corresponding value for device B. Then a message sent from A to B can
be forcibly delayed by a considerable period of time without detection
by B. Indeed, by the time the message arrives at B, A may no longer
be ‘live’; which, if the protocol is providing entity authentication, can
be regarded as a protocol failure.

Dealing with such a situation is very difficult indeed. However, such
an attack will probably only be a problem in certain circumstances.
Indeed, if the protocol is being used for key establishment at the start
of a secure session, then this attack is most unlikely to be an issue.
The conclusion is that a timestamp-based protocol should only be used
with care, but the same is true of almost every security solution.

6 Concluding remarks

There are some similarities between the timestamp management proposal de-
scribed here to a previous proposal to use timestamps to generate sequence
numbers (see [5]). However, this latter scheme was designed for use in a par-
ticular type of network, namely where a single ‘server’ entity communicates
with a large number of ‘client’ entities, and clients do not intercommunicate.
The solution described here is not specific to such a network architecture.

The solution described enables timestamp based protocols to be used in
the absence of routine clock resynchronisations. There are possible problems
with DoS attacks, and also with suppress replay attacks. However, depend-
ing on the environment in which the protocol is used, these problems may
not be significant. For networks where devices have limited communications
resources, e.g. mobile and ad hoc networks, the proposed timestamp man-
agement scheme may be an efficient alternative to the use of nonce-based
protocols.

References

[1] L. Chen, D. Gollmann, and C. Mitchell. Tailoring authentication pro-
tocols to match underlying mechanisms. In J. Pieprzyk and J. Seberry,
editors, Information Security and Privacy — Proceedings: First Aus-
tralasian Conference, Wollongong, NSW, Australia, June 1996, pages
121-133. Springer-Verlag, Berlin, 1996.

[2] L. Gong. A security risk of depending on synchronised clocks. ACM
Operating Systems Review, 26(1):49-53, January 1992.

6



[3] K.-Y. Lam. Building an authentication service for distributed systems.
Journal of Computer Security, 2:73-84, 1993.

[4] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, 1997.

[5] C.J. Mitchell. Making serial number based authentication robust against
loss of state. ACM Operating Systems Review, 34(3):56-59, July 2000.



