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Abstract

The main objective of this paper is to highlight some of the major security

and application issues confronting trusted computing technology. This tech-

nology, now present in a large proportion of new PCs and incorporating a

wide range of cryptographic functionality, has the potential to have a ma-

jor practical impact, but has not been widely discussed. This paper is an

attempt to encourage greater debate about this technology and its possible

implications. Following a brief introduction to the history of trusted com-

puting, we provide a summary of its main features. This leads naturally to

a consideration of the issues which may impede its use, including potential

problems with its cryptographic components. Possible applications of the

technology are then discussed.
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1 Introduction

Trusted computing (TC) is a security technology that has become ubiqui-

tous almost by stealth. A significant proportion of all new PCs now incorpo-

rate special-purpose hardware implementing trusted computing functional-

ity. This hardware provides every PC with a secure environment capable of

storing secret information, generating cryptographic keys, and implementing

cryptographic functions such as encryption and digital signatures. This alone

means that trusted computing has the potential to significantly enhance PC

security. Even more importantly, trusted computing also incorporates fea-

tures which enable the state of a PC to be measured and recorded, and for

data to be protected so that it is only available if the PC is in a trusted state.

In this paper we provide a brief introduction to trusted computing technol-

ogy. We outline the main functions it provides, and consider how it achieves

its goals. We then go on to review possible security issues with trusted com-

puting. Unsurprisingly, given its high ambitions and considerable complexity,

trusted computing technology has already attracted a number of criticisms.

Finally, we review some of the ways in which the technology can be used.

The paper has the following main parts. Following this introductory section,

in section 2 we provide a brief history of the development of trusted com-

puting. This is followed, in section 3, by a review of the main components

of trusted computing technology. Section 4 considers the core trusted com-
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puting functionality in greater detail. Security issues arising with trusted

computing are considered in section 5, and possible applications of the tech-

nology are reviewed in section 6. The paper concludes in section 7 with a

brief discussion of the possible future of the technology.

2 Trusted Computing: A Brief History

The term trusted computing, as used here, is surprisingly recent, although

some of the key ideas have been around for much longer. Two of the earliest

papers to explore trusted computing were published as recently as 2000 [6,

20]. As discussed by Pearson [60], the Trusted Computing Platform Alliance

(TCPA), an industry alliance created to develop and standardise Trusted

Platform technology, was formed in October 1999. The TCPA released the

first specifications in early 2001, defining a fundamental component of a

trusted platform, namely a Trusted Platform Module (TPM). A TPM is

typically implemented as a chip mounted on a PC motherboard, and provides

a foundation for all trusted functionality in the PC (in combination with

the BIOS). The TCPA specifications are described in some detail in a book

published in 2002 [59] (and summarised in [60]).

The work of the TCPA was inherited by its successor body, the Trusted

Computing Group (TCG), which is continuing to develop these specifications.

An analysis of privacy issues relating to trusted computing, as defined by the

TCG, has been provided by Reid, Gonzaléz Nieto and Dawson [67].

The TCPA and TCG have not been the only source of developments relating
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to trusted computing. Probably the best known of these other developments

is the set of proposals from Microsoft, initially under the name Palladium,

and subsequently under the title Next Generation Secure Computing Base

(NGSCB). NGSCB is a secure operating system architecture, which requires

the underlying platform to have certain trusted features. These include the

features that are provided by a TCG TPM, together with certain other pro-

cessor and chipset enhancements. The architecture of NGSCB would appear

to have changed significantly since the first announcements of Palladium.

Useful background on the evolution of NGSCB is provided in [31, 32, 62].

The Terra system architecture [37], the Perseus framework [64, 71], the Open

Trusted Computing architecture [44], and the European Multilaterally Secure

Computing Base (EMSCB) [72], all have some similarities to the most re-

cently published version of NGSCB. At the heart of each architecture is

an isolation layer that has been designed to support the compartmentalised

execution of software.

Terra is based on the notion of a Trusted Virtual Machine Monitor (TVMM)

that partitions a computing platform into multiple, isolated, virtual ma-

chines. The Perseus framework and the Open Trusted Computing architec-

ture use either a virtual machine monitor such as Xen [14] or a microkernel

to provide isolated execution environments. EMSCB incorporates an L4

microkernel-based isolation layer. Each architecture also assumes the use of

a trust-enhanced hardware platform which includes a TPM. The presence

of chipset and processor enhancements are also pivotal to all architectures

in order to enable an implementation of a high-assurance isolation layer.
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Hardware manufacturers such as Intel and AMD have specified the required

processor enhancements and chipset extensions under the names of LaGrande

[39] and Presidio respectively.

While the execute-only memory (XOM) architecture, and the architecture

for tamper evident and tamper resistant processing (AEGIS), are not strictly

examples of trusted computing platforms, they also provide strong process

isolation through the development of hardened processors. The XOM archi-

tecture of Lie et al. [46, 47] attempts to fulfil two fundamental objectives:

preventing unauthorised execution of software and preventing software con-

sumers from examining protected executable code. This is achieved through

the provision of on-chip protection of caches and registers, protection of cache

and register values during context switching and on interrupts, and confi-

dentiality and integrity protection of application data when transferred to

external memory.

The architecture for a single chip AEGIS processor bears a strong resem-

blance to the XOM architecture described above. “AEGIS provides users

with tamper evident authenticated environments in which any physical or

software tampering by an adversary is guaranteed to be detected, and pri-

vate and authenticated tamper resistant environments, where, additionally,

the adversary is unable to obtain any information about software and data

by tampering with, or otherwise observing, system operation” [79].

The concept of a secure boot process, another key issue related to the notion

of trusted computing, has been widely discussed in the literature, most no-
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tably by Tygar and Yee [90], Clark [22], Arbaugh, Farber and Smith [5] and

Itoi et al. [42].

Finally we note that trusted computing has been the subject of a considerable

amount of criticism. Suggestions have been made that trusted computing is

both a potential threat to user privacy and a threat to the ability of the

owner of a PC to use it however he or she wishes. It is outside the scope of

this paper to describe all the issues raised; we simply note that some of the

most outspoken criticism is due to Anderson [3] and Arbaugh [4].

3 Trusted Computing Components

Trusted computing, as discussed here, relates directly to the types of sys-

tem proposed by the TCG. That is, for our purposes a trusted system is

one that can be relied on to behave in a particular manner for a specific

purpose. Since its release, trusted computing has become synonymous with

three fundamental concepts:

• an authenticated boot process, which enables a platform’s state to be

reliably measured and recorded;

• platform attestation, which allows a platform’s state to be reliably re-

ported; and

• protected storage functionality, which enables data to be stored on a

trusted platform so that it is both confidentiality and integrity pro-

tected, and so that the owner of the data can control the software state
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that the platform must possess in order for that data to be accessible.

However, more recently, the definition of what constitutes trusted computing

functionality has been revised and extended to incorporate the concepts of:

• a secure boot process, which enables a platform’s state to be reliably

measured, verified and recorded; and

• software isolation, which supports the unhindered execution of software

safe from interference by other software running on the same platform.

In the remainder of this section we describe the basic components which

must be integrated into a trusted platform in order to support these five fun-

damental functions, i.e. authenticated boot, platform attestation, protected

storage, secure boot and software isolation. In section 4 we then examine the

functionality offered by a trusted platform in greater detail.

3.1 The Root of Trust for Measurement

An integrity measurement is defined by Peinado, England and Chen [63] as

the cryptographic digest or hash of a platform component (i.e. a piece of

software executing on the platform). For example, an integrity measurement

of a program can be calculated by computing a cryptographic digest of a

program’s instruction sequence, its initial state (i.e. the executable file), and

its input. An integrity metric is defined as “a condensed value of integrity

measurements” [59].
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The Root of Trust for Measurement (RTM) is a computing engine capable of

measuring at least one platform component, and hence providing an integrity

measurement. The RTM is typically implemented as the normal platform

processor controlled by a particular instruction set (the so-called ‘Core Root

of Trust for Measurement’ (CRTM)). On a PC, the CRTM may be contained

within the BIOS or the BIOS Boot Block (BBB), and is executed by the

platform when it is acting as the RTM. It is required by the TCG that the

CRTM is protected against software attack; the CRTM must be immutable,

as defined by the TCG, meaning that its replacement or modification must

be under the control of the host platform manufacturer alone [81]. It is also

preferable that the CRTM be physically tamper-evident [59].

3.2 The Root of Trust for Storage

The Root of Trust for Storage (RTS) is a collection of capabilities which must

be trusted if storage of data in a platform is to be trusted [59]. The RTS is

capable of maintaining an accurate summary of integrity measurements made

by the RTM, i.e. condensing integrity measurements and storing the result-

ing integrity metrics. The RTS also provides integrity and confidentiality

protection to data.

3.3 The Root of Trust for Reporting

In conjunction with the RTM and RTS, an additional root of trust is nec-

essary for the implementation of platform attestation, namely the Root of
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Trust for Reporting (RTR). The RTR is a collection of capabilities that

must be trusted if reports of integrity metrics are to be trusted (platform

attestation) [59].

The RTS and the RTR constitute the minimum functionality that should be

provided by a TPM [85, 86, 87]. A TPM is generally implemented as a chip

which must be physically bound to a platform. In order to support RTS and

RTR functionality, a TPM incorporates a number of functional components,

including:

• a number of special purpose registers for recording platform state,

known as Platform Configuration Registers (PCRs);

• a means of reporting this state to remote entities;

• secure volatile and non-volatile memory;

• random number generation;

• a SHA-1 hashing engine; and

• asymmetric key generation, encryption and digital signature capabili-

ties.

The TPM must be completely protected against software attack, i.e. the

RTS and RTR (in the TPM) must be immutable, which implies that the

replacement or modification of RTS and RTR code must be under the control

of the TPM manufacturer alone. The TPM is required to provide a limited

degree of protection against physical attack (i.e. tamper-evidence) [59].
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3.4 Root of Trust for Verification

The TCG main specifications do not define the components necessary to en-

able a secure boot process. However, the recently released specifications for

a TCG mobile trusted module [84] describe a fourth root of trust which must

be incorporated into a platform if it is to offer this functionality, namely a

Root of Trust for Verification (RTV). The RTV is defined as a comput-

ing engine capable of verifying at least one platform component’s integrity

measurement against its expected value (known as a Reference Integrity Mea-

surement (RIM)).

3.5 Isolation Technology

A number of approaches have been proposed to provide software isolation,

the most prominent of which we now describe. An operating system (OS)-

hosted Virtual Machine Monitor (VMM), such as VMWare workstation, can

be used to enable software isolation. In this case, all guest OSs executing

in virtual machines use the host OS device drivers. While this implies that

every guest can use drivers developed for the host machine, it also means

that the isolation layer essentially incorporates the VMM and the host OS,

making assurance problematic [2, 63].

In a standalone virtual machine monitor, such as Terra [37], all devices are

virtualised or emulated by the VMM. This means that the VMM must con-

tain a virtual device driver for every supported device. As the set of devices

used in consumer systems is often large, and as many virtual device drivers
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are complex, the size of the VMM quickly grows at the cost of assurance. A

standalone VMM exposes the original hardware interface to its guests. While

this implies that legacy OSs can be supported, it also means that the VMM

size is increased because of the complexity involved in virtualising the x86

CPU instruction set [63].

Isolation layers using para-virtualisation techniques, such as Xen [14], have

been designed for efficiency, and try to alleviate the complexity introduced

when devices are virtualised. Two common approaches used in order to

para-virtualise I/O are as follows [2]. In the first case, an I/O-type-specific

API for each device is integrated into the VMM, in conjunction with the

device drivers [2]. This approach requires a guest OS to incorporate para-

virtualised drivers which enable communication with the VMM APIs rather

than the hardware device interfaces. While this gives performance gains

over full virtualisation, the guest OS must be modified to communicate with

the I/O-type-specific APIs. Alternatively, a service OS, which incorporates

the VMM APIs and the device drivers, executes in parallel to guest OSs,

which are modified to incorporate para-virtualised drivers [2]. To enable this

approach, devices are exported to the service OS. While this approach means

that device drivers do not have to be implemented within the isolation layer,

the isolation layer may become open to attack from a guest in control of a

direct memory access device which is, by default, given unrestricted access

to the full physical address space of the machine.

The NGSCB isolation layer [62, 63] follows the second approach above, and

was designed to take advantage of CPU and chipset extensions incorporated
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in a new generation of processor hardware; such hardware is being provided,

for example, by Intel’s LaGrande initiative [39]. The isolation kernel has

been designed to execute in a CPU mode more privileged than the existing

ring 0, effectively in ring -1, which is being introduced in new versions of

the x86 processors. This enables the isolation layer to operate in ring -1

and all guest OSs to execute in ring 0. Thus, complexity problems which

arise when virtualising the x86 instruction set are avoided [63]. The original

hardware interface is exposed to one guest OS [63]. However, rather than

necessitating the virtualisation of all devices, as a VMM does, devices are

exported to guest OSs which contain drivers for the devices they choose to

support. Guest operating systems may then efficiently operate directly on

the chosen device.

This does, however, leave the problem of uncontrolled DMA devices, which by

default have access to all physical memory. In order to prevent DMA devices

circumventing virtual memory-based protections provided by the isolation

layer, it is necessary for the chipset manufacturers to provide certain instruc-

tion set extensions. These enable a DMA policy to be set by the isolation

layer, which specifies, given the state of the system, if a particular subject

(DMA device) has access (read or write) to a specified resource (physical

address), [63]. The DMA policy is then read and enforced by hardware, for

example the memory controller or bus bridges.

Hardware extensions required in order to support the secure implementation

of the NGSCB isolation layer have been provided as part of Intel’s LaGrande

[39] and AMD’s Presidio initiatives. Both enable the efficient and secure
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implementation of the NGSCB isolation layer through CPU and chipset ex-

tensions. Both also support the establishment of trusted channels between

the input and output devices and programs running within an isolated envi-

ronment.

4 The Trusted Platform Subsystem Function-

ality

In this section we explore the core mechanisms synonymous with trusted

computing in further detail.

4.1 The Authenticated Boot Process

An authenticated boot process enables the state of a platform to be reliably

measured and recorded. In order to describe an authenticated boot process

we first need to introduce some fundamental TPM concepts. A PCR is a

20-byte integrity-protected register present in a TPM; a TPM must contain

a minimum of 16 such registers. When a component is ‘measured’, a 20-byte

SHA-1 hash of the component is computed. The output hash value (i.e. the

measurement of the component) is then stored in one of the TPM PCRs. In

order to ensure that an unlimited number of measurements can be stored in

the limited number of PCRs in a TPM, multiple measurements can be stored

in a single PCR. This is achieved by concatenating a new measurement with

the existing contents of a PCR, hashing the resulting string, and then storing
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the output hash code in the PCR.

A record of all measured components is stored in the Stored Measurement

Log (SML), which is maintained externally to the TPM. The information in

the SML is necessary to interpret the PCR values, but does not need to be

integrity protected.

A simplified authenticated boot process in a PC might proceed as follows,

where we assume that the CRTM is part of the BIOS Boot Block (BBB).

The CRTM first measures itself and the rest of the BIOS (i.e. the POST

BIOS). The computed measurements are then passed to the RTS, which

condenses them and records the resulting integrity metric in the first of the 16

PCRs (PCR-0) within the TPM. Control is then passed to the POST BIOS,

which measures the host platform configuration, the option ROM code and

configuration, and the OS loader. The computed measurements are passed

to the RTS, which condenses them and stores the resulting integrity metrics

in PCRs 1-5. Control is then passed to the OS loader which measures the

OS. At each stage a record of all measurements computed is stored in the

SML.

This process of measuring, condensing, storing, and handing off, continues

until, at the end of the boot process, the platform’s state has been measured

and stored. The exact measurement process is dependent on the platform;

for example, the TCG specifications detail authenticated boot processes for a

platform which has a 32-bit PC architecture BIOS [81], and for an Extensible

Firmware Interface (EFI) platform [83].
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4.2 TPM Protected Storage

The TPM provides secure (‘protected’) storage functionality, designed to en-

able an unbounded number of secrets/data to be confidentiality and integrity

protected on a TP.

Each TPM contains a Storage Root Key (SRK), a 2048-bit key pair for an

asymmetric encryption scheme. The private key from this key pair is per-

manently stored inside the TPM. This key pair is the root of the TPM

protected object hierarchy. A TPM protected object in this hierarchy may be

classified as either a TPM protected key object, i.e. an asymmetric key pair

whose private key is encrypted using a key at a higher layer in the hierarchy,

or a TPM protected data object, i.e. data or a secret key for a symmetric

algorithm, which has been encrypted using a key at a higher layer of the

hierarchy.

Asymmetric encryption is used to confidentiality-protect key and data ob-

jects. Encrypted storage also provides implicit integrity protection of TPM-

protected objects. Data can be associated with a string of 20 bytes of au-

thorisation data before it is encrypted. When data decryption is requested,

the authorisation data must be submitted to the TPM. The submitted au-

thorisation data is then compared to the authorisation data in the decrypted

string, and the decrypted data object is only released if the values match.

If the encrypted object has been tampered with, the authorisation data will

most likely have been corrupted (because of the method of encryption em-

ployed) and access will not be granted even to an entity which has submitted
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the correct authorisation data. However, functionality to control how data

is used on its release, or to protect data from deletion, is not provided.

The TPM protected storage functionality incorporates a key generation ca-

pability. This capability enables the generation of key pairs whose private

keys can only be used on the TPM on which they were generated. An addi-

tional constraint may also be applied which prevents private key use unless

the TPM host platform is in a specified state. Moreover, key pairs can be

generated with the property that the private keys are never exported from

the TPM in unencrypted form.

The TPM enables the encryption of keys or data outside the TPM in such

a way that they can only be decrypted on a particular TPM. It also enables

the encryption of keys or data so that they can only be decrypted when a

particular TPM host platform is in a specified state.

Finally, sealing functionality is provided, i.e. the encryption by the TPM of

data so that it can only be decrypted on that particular TPM, and only

when the host platform is in a specified state. The data to be sealed is

associated with two sets of integrity metrics, one which represents the state

of the platform when the data was sealed (digest at creation), and one which

represents the state of the platform required for the data to be unsealed

(digest at release). The sealed data will only be released by the TPM if the

host platform is in the state specified in the digest at release. Once the data

has been released, the digest at creation can be checked in order to ensure

that the data was not sealed by rogue software.
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4.3 Platform Attestation

Platform attestation enables a TPM to reliably report information about its

identity and the current state of the TPM host platform. This is achieved

using asymmetric cryptography, as we describe below. The procedure also

uses a set of key pairs and associated credentials (certificates); this somewhat

complex process is necessary in order to allow TP anonymity. We describe

the key pairs and the credentials before describing the attestation process

itself.

4.3.1 Platform Keys and Credentials

Each TPM is associated with a unique asymmetric encryption key pair called

an endorsement key pair, which is generated at the time of manufacture. The

TP incorporating the TPM is further equipped with a set of credentials, i.e.

data structures (certificates) signed by a variety of third parties. It is to be

expected that these credentials will all be in place at the time the platform

is provided to an end user.

We next briefly enumerate the three key types of credential.

• A entity known as the trusted platform management entity (which is

likely to be the TPM manufacturer) attests to the fact that the TPM is

genuine by digitally signing an endorsement credential. This certificate

binds the public endorsement key to a TPM description.

• Conformance credentials are certificates that attest that a particular
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part of a trusted platform, e.g. a type of TPM, an associated compo-

nent such as a CRTM, the connection of a CRTM to a motherboard,

and/or the connection of a TPM to a motherboard, conform to the

TCG specifications. Such a certificate might be signed by a third party

testing laboratory.

• A platform entity (typically the platform manufacturer) offers assur-

ance in the form of a platform credential that a particular platform is

an instantiation of a TP. In order to create a platform credential, a

platform entity must examine the endorsement credential of the TPM,

the conformance credentials relevant to the TP, and the platform to be

certified.

Since a TPM can be uniquely identified by the public key from its endorse-

ment key pair, this key pair is not routinely used by a platform, helping to

ensure that the activities of a TP cannot be tracked. Instead, an arbitrary

number of pseudonyms in the form of Attestation Identity Key (AIK) key

pairs can be generated by a TPM and associated with its host TP. This

can be achieved using a special type of third party known as a Privacy-

Certification Authority (P-CA). A P-CA associates AIK public keys with

TPs by signing certificates known as AIK credentials.

When a platform requests an AIK credential from a P-CA, it must supply

the three types of TP credential listed above, as issued at the time of manu-

facture. The P-CA verifies the TP credentials, thereby obtaining assurance

that the TP is genuine, and then creates (signs) an AIK credential bind-
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ing the AIK public key to a generic description of the TP; note that this

generic description should capture enough information for a verifier of the

credential to have assurance in the trustworthiness of the platform, but not

enough information to uniquely identify it. High-level descriptions of a TPM

endorsement credential, a platform credential, an AIK credential and their

relationship are shown in figure 1.

TPM Endorsement

Credential


Platform Credential


Attestation Identity Key

Credential


TPME signtaure


Platform entity signtaure


P-CA signature


Identity label


TPM model


Identity public key


TPM manufacturer


Platform type


Platform

manufacturer


P-CA identifier


Pointer to

endorsement


credential


Platform

manufacturer


Platform model


Platform entity

identifier


Public

endorsement key


TPM manufacturer


TPM model


TPME identifier


Pointer to

conformance

credentials


Figure 1: TP credentials [88]

The AIK private key is then used by the TPM during platform attestation.

Note, the fact that a platform can generate arbitrary numbers of AIKs (and

obtain associated credentials) enables a platform to obtain and use unlinkable

pseudonyms, i.e. so that attestations to different third parties (or even to the

same party) can be made unlinkable.
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4.3.2 Platform Attestation

As stated above, platform attestation is a process by which a platform makes

a verifiable claim about its current state, as captured by the current contents

of its PCRs. The process starts with the challenger, i.e. the party wishing

to have assurance about the current platform state, sending a nonce to the

platform. The platform then uses one of its AIK private keys to sign a

combination of this nonce and integrity metrics reflecting the current state

of the platform.

This signed string is returned to the challenger, along with the record of

the platform components which are reflected in the integrity metrics (i.e. (a

portion of) the SML), together with the appropriate AIK credential. The

challenger then uses this information to determine whether it is:

• safe to trust the TP from which the statement has originated, by veri-

fying the TPM’s signature and the AIK credential; and

• safe to trust (all or part of) the software environment running on the

platform; this is achieved by validating the integrity metrics received

from the TP using ‘trustworthy’ software integrity measurements at-

tested to by trusted third parties such as software vendors.

4.4 Privacy-CAs and Direct Anonymous Attestation

As discussed by Brickell, Camenisch and Chen [17], version 1.2 of the TCG

specifications incorporate the Direct Anonymous Attestation (DAA) proto-
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col. This protocol is designed to address an anonymity issue in the previous

version of the specifications. This arises from the use of AIK pairs by a TPM.

Whilst a TPM can have an unlimited number of AIKs, acting as pseudonyms

for the host platform, an entity which interacts with the platform needs to

be given evidence that the public part of an AIK corresponds to a genuine

trusted platform. As stated in the previous section, in systems conforming to

the version 1.1 specifications this is achieved by using a special trusted third

party called a Privacy-CA, which is responsible for generating certificates for

the public AIKs. The problem with such an approach is that the Privacy-CA,

when checking the credentials of a trusted platform, learns the fixed public

endorsement key of a TPM, and hence has the means to link the public

AIK back to a unique platform. That is, the Privacy-CA could collude with

platform verifiers to break platform anonymity.

Of course, one solution to this would be for the owner of a trusted platform

to choose a Privacy-CA which he/she trusts — indeed, for a corporate en-

vironment this should not be difficult to arrange. However, it was felt that

this placed an unnecessary burden on the user, and for this reason the DAA

protocol was introduced. This protocol enables a platform to simultaneously

prove ownership of a DAA credential (provided by a DAA Issuer) and sign a

message (e.g. containing the public part of an AIK). This proof of ownership

does not reveal the credential, and so, even if the third party which issued

the credential (the ‘DAA Issuer’) colludes with a verifier, it is still impossible

to identify the platform.
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However, even though DAA is a rather sophisticated protocol, which has

provable security properties (see, for example, [15, 16]), possible problems

remain (see also section 5.2 below). As discussed by Camenisch [18], the

Privacy-CA scheme has the advantage that it makes it easier for compro-

mised TPMs to be revoked; see also section 5.4. Camenisch also describes a

means of improving the operation of DAA, which enables the identification

of compromised TPMs without reducing platform privacy.

4.5 Isolated Execution Environments

An isolated execution environment, independent of how it is implemented,

should provide the following services to hosted software [63]:

• protection of the software from external interference;

• observation of the computations and data of a program running within

an isolated environment only via controlled inter-process communica-

tion;

• secure communication between programs running in independent exe-

cution environments; and

• a trusted channel between an input/output device and a program run-

ning in an isolated environment.
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4.6 The Secure Boot Process

A secure boot process extends the integrity measurement and storage func-

tionality described in section 4.1. During a secure boot, a platform’s state is

reliably captured, compared against measurements indicative of a trustwor-

thy platform state, and then stored. If a discrepancy is discovered between

the computed measurements and the expected measurements, then the plat-

form halts the boot process.

5 Security Issues

The TCG specifications for the TPM are large and complex, and as a result

it seems inevitable that some security vulnerabilities will be present. In fact,

given this complexity, it is rather surprising that more issues have not been

identified — in any event, detailed security analysis of the TCG specifications

will remain an area of considerable importance for some time to come.

In this section we review those issues that have been raised to date. In each

case we briefly review the main issue, and provide a brief assessment of its

seriousness.

5.1 Use of Cryptographic Primitives

The cryptographic primitives used in the TCG specifications are to a signifi-

cant extent ‘hard coded’ — for example, the hash-function used to compute

integrity metrics, as stored in the PCRs of a TPM, is SHA-1. This hard
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coding is a problem for two main reasons.

Firstly, there is a known issue with SHA-1, namely the recent discovery of

possible weaknesses [91] which indicates that collisions can be found signif-

icantly more easily than would ideally be the case. As a result, NIST has

recently launched a competition to develop a new family of hash-functions

[54], under the title SHA-3.

Secondly, apart from SHA-1, the use of cryptography in the TCG specifi-

cations is not in accordance with current best practice (or even the best

practice at the time they were written). For example, RSA signatures and

RSA encryption are not performed in provably secure ways. This contrasts

with recent efforts by ISO and the IEEE to standardise best practice for

asymmetric cryptography — see, for example, [26]. As a result, it would not

be altogether surprising if cryptography-based attacks emerge over the next

few years.

In retrospect it would almost certainly have been better to take a more

generic approach to the use of cryptography, with the use of ‘algorithm iden-

tifiers’ to identify the algorithms employed. Moreover, it would also have

been better to adopt the best practice for the use of asymmetric cryptog-

raphy. It is understood that the TCG is developing a revised specification

for the TPM (presumably to become version 1.3), and it is anticipated that

some moves in this direction will be incorporated in these new documents.

As a side remark, it is interesting that Microsoft has chosen to compound this

adoption of non-standard (and unproven) cryptographic techniques within
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the BitLocker drive encryption system, which forms part of its Vista operat-

ing system. This is of relevance here since BitLocker can exploit functionality

provided by a trusted platform to provide hardware support for drive encryp-

tion. The Bitlocker scheme uses something called the ‘Elephant Diffuser’ in

conjunction with AES encryption in CBC mode [33] to provide a degree of

integrity protection for encrypted data. This scheme falls somewhat short of

the level of protection provided by more widely known techniques for authen-

ticated encryption (see, for example, [41]) — although its ambitions are more

limited, and the BitLocker application requirements rule out standard tech-

niques since the encrypted data string must be no longer than the plaintext

data.

5.2 An Anonymity Attack

Rudolph [68] has recently pointed out a potential problem with the way that

the DAA protocol is used in the TCG specifications. This problem means

that it may be possible for a malicious DAA Issuer to enable DAA Verifiers

to identify the trusted platform with which they are interacting, thereby

breaching the anonymity properties of the protocol. This problem arises

from the way that public keys are used by DAA Issuers.

Each DAA Issuer has its own long-term key pair, the public key of which

is contained in a certificate generated by a CA. However, this key pair is

not used directly in generating credentials for individual trusted platforms.

Instead the DAA Issuer generates another key pair for this purpose, and
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it uses the long-term private key to sign the public key of this pair. This

enables the DAA Issuer to update its key pair from time to time, without

needing to obtain a new certificate from the CA.

Rudolph [68] points out that a malicious DAA Issuer could generate a large

number of different key pairs, and use a different key pair for each credential

that it generates. This would enable the DAA Issuer to collude with platform

verifiers to identify individual trusted platforms.

However, as discussed in [45], it is not clear whether the Rudolph attack

would work in practice. In particular, if a DAA Issuer did create a large

number of different key pairs, then this would become obvious to the system

users. It would be very simple to put in place monitoring procedures which

could readily detect such behaviour by a DAA Issuer.

However, more subtle attacks along the lines proposed by Rudolph would be

much more difficult to detect. In particular, if a DAA Issuer is only interested

in tracking the behaviour of a small number of trusted platforms, then this

could be achieved using only a correspondingly small number of distinct key

pairs. Such tracking of a small subset of platforms would then be much

harder to detect. Possible countermeasures to such an attack are discussed

in [45], although this is clearly an area which merits further research.

5.3 Corrupt Administrator Attacks

Another possible privacy vulnerability in the implementation of the DAA

protocol has been pointed out by Smyth, Ryan and Chen [75]. Giving a
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complete description of the attack requires going into the details of the DAA

protocol, which is beyond the scope of this paper. Nevertheless, we attempt

here to summarise the main issue giving rise to the vulnerability.

The DAA protocol is designed so that, if the same platform performs the

DAA-signing protocol twice with the same DAA Verifier, then the Verifier

can link these two transactions. The purpose of this linking is to enable rogue

platforms, e.g. platforms using secrets obtained from a compromised TPM,

to be identified. This linking is achieved by binding the name of the Verifier

to a parameter used in the DAA signing process.

The problem identified in [75] arises if a corrupt DAA Issuer and the DAA

Verifier use the same identifier. If this occurs, then these two entities can link

the DAA credential (created by the DAA Issuer) with the DAA signature

created by the trusted platform — that is, the Verifier can, with the help of

a corrupt DAA Issuer, identify a trusted platform, breaking the anonymity

property which DAA was create to provide.

As described in [75], this problem is simple to fix by making a small change to

the way the DAA protocol is used in the TCG specifications. Like the attack

described in section 5.2, it can be seen as a way in which a provably secure

protocol has undesirable properties when used in particular circumstances.

This suggests that there may be yet further unexpected vulnerabilities in

DAA and/or other security features of the TPM, despite the soundness of

the underlying cryptographic protocols and primitives.
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5.4 Practical Issues

We also highlight a number of problems relating to the establishment of the

infrastructure necessary to support the full TCG vision, as discussed in [9].

Topics addressed include issues with setting up and maintaining the Public

Key Infrastructure (PKI) required to support the full set of trusted comput-

ing functionality, the practical use and verification of attestation evidence,

and backwards compatibility, usability and compliance issues.

The deployment and use of trusted computing services is dependent on a fully

functioning Trusted Computing PKI (TC-PKI), which is currently unavail-

able. While the challenges of PKI deployment are well-documented [38, 65],

implementing a TC-PKI introduces additional considerations. As described

in section 4.3.1, not only does a TC-PKI involve a large number of CAs,

but there are also a series of implicit dependencies between these CAs. For

example, a platform CA depends on the due diligence of an endorsement CA

and one or more conformance CAs. Furthermore, these dependencies are

currently only informally defined and there is therefore no indication as to

where any liability will lie. While certificate polices and certification practice

statements are traditionally used to define and limit the liability of CAs to

relying parties, they are difficult and costly to create.

Issues are further complicated because of the reliance of every CA within the

TC-PKI on the endorsement CA and, indeed, on the validity of the endorse-

ment credential. This implies that, if a TP’s endorsement key is compromised

and the endorsement credential is revoked, all dependent credentials must in
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turn be revoked. This would include the TP’s platform credential and all

attestation identity credentials. Contacting all relevant CAs regarding the

revocation decision may prove costly and time-consuming.

Further issues arise with respect to TPM compromise and revocation. A

TPM is only required to be tamper-evident rather than tamper resistant. An

attack enabling a TPM’s PCRs to be reset without a platform reboot, thereby

destroying the transitive chain of trust upon which a remote verifier relies to

assess a platform, has recently been documented [78]. The demonstration of

a PCR reset using a relatively unsophisticated hardware attack underlines

the need for a verifier to consider the quality of a trusted platform when

assessing its state; this also suggests that it may not be long before a TPM

is completely compromised, and all its keys and credentials extracted. To

help address this threat, a TPM’s interactions with P-CAs and DAA Issuers

could be monitored, and an excessive number of certification requests from a

particular TPM could be used to detect a compromised platform. A number

of issues arise with this approach.

• CAs might specify different thresholds for determining what is meant

by “excessive”, potentially leading to a high number of false positives

for CAs with low thresholds.

• Once a compromised TPM has been detected, there is a need to glob-

ally propagate this information to prevent the compromised TPM host

platform from being (mis)used elsewhere. This requires the establish-

ment of a global revocation infrastructure.
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• A CA must consider potential legal issues that might result from the

wrongful issuance of revocation statements damaging a platform’s abil-

ity to interact with other parts of the infrastructure.

• To alleviate the risk of a malicious P-CA issuing falsified revocation

statements, a means by which the credibility of CAs in issuing such

statements can be assessed must be provided.

Problems relating to the binary representation of platform state information

have also been widely documented [9, 70]. The exact parameters to be con-

sidered when performing integrity measurements on platform components

have yet to be standardised.

Because of the limited number of PCRs in a TPM, each PCR can be used

to record multiple measurements. However, as the number of platform com-

ponents increases, so does the complexity of third party verification of attes-

tation statements. It also becomes difficult for a challenger to verify a single

component running on a platform.

Problems relating to platform component updates and patching are also likely

to arise. The order in which patches are applied can result in a “combinatorial

explosion” of distinct configurations for a single application, each configura-

tion requiring a distinct reference value for attestation purposes. Frequent

patching may also lead to problems with sealed data. If an update or patch

is applied to a software component to which a key or data is sealed, this key

or data must be unsealed and resealed to the updated software component

measurements. Failure to reseal to the updated component measurements
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will result in the key or data being inaccessible after the patch has been

applied.

The issue of user observable verification must also be considered. McCune et

al. [51] describe a scenario in which a user’s platform has become infected with

malware. Despite the fact that this infection can be detected by an external

entity during an attestation process, the external entity has no way of reliably

informing the end user that the user platform has ‘failed’ the attestation

process. Malware might simply modify the user’s display, resulting in the

user believing their platform to be in an acceptable state, and, because of

this, going on to disclose sensitive information to the malware.

As a consequence of the piecemeal roll-out of TC technologies, current trusted

platforms do not come equipped with CRTMs, isolation technologies, pro-

cessors or chipset extensions. Instead, current trusted platforms include only

a TPM meeting the relevant TCG specifications, and, with the exception of

Infineon TPMs, do not even include endorsement credentials. To the best

of our knowledge, all currently available platforms lack both conformance

credentials and platform credentials. This situation has the potential to cre-

ate an awkward backward compatibility issue as and when fully-deployed

TC-PKIs become available. In particular, the absence of these credentials

will make it difficult, if not impossible, for a platform to later acquire AIK

credentials without operating at reduced assurance levels.

The absence of CRTMs, isolation technologies, processors and chipset exten-

sions in current TPM-enabled platforms makes the use of much of the TC
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functionality described in section 4 essentially unreliable. Techniques such

as sealing and attestation are unworkable if the host platform’s state can-

not be reliably measured. In order to enable these features on an already

deployed platform, measurement functionality (in the form of a CRTM and

modified operating system) would need to be integrated into the platform

after deployment. This would require the installation of a new OS and the

BIOS to be flashed, tasks that would prove difficult for the average user.

Furthermore, hardware-based isolation, enabled through the processor and

chipset extensions, cannot be retrofitted to platforms already in the field. As

a result, it seems unlikely that first generation trusted platforms can ever

be adequately upgraded to provide all the services associated with a trusted

platform, although the problems might be more tractable in a corporate en-

vironment.

Problems are also foreseen with respect to usability and conformance. En-

abling a TPM prior to its use is a non-trivial task, which requires a user

to understand and edit BIOS settings. Once enabled, a user is further con-

fronted with setting a TPM owner password, selecting key types fit for pur-

pose, and enrolling certain keys within a PKI. Further problems may arise

with respect to password use and management, as unique passwords may be

associated with the TPM owner as well as with data and keys protected by

a TPM. While the deployment of multiple passwords may be viewed as a

sound security decision, management of such passwords so that access is not

jeopardised may prove problematic.

Finally, as many of the additional technological building blocks required to
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instantiate a trusted platform are not standardised, and the TCG does not

dictate implementation specifics to its adopters, a number of currently avail-

able TPMs do not comply with the TPM specifications [69]. This latter

issue may, however, be mitigated by the development (currently ongoing) of

compliance and interoperability test suites for TPMs.

6 Applications

6.1 Existing Applications

Perhaps the most widely discussed existing application of trusted computing

technology is that provided within certain versions of Windows Vista. Most

notably, if present, a TPM can be used to enhance the security provided by

the BitLocker drive encryption feature of Vista1.

BitLocker is a full disk encryption feature, i.e. it enables the encryption of the

entire system volume. By default it uses the AES encryption algorithm [55] in

CBC mode [40] with a 128-bit key, combined with the Elephant diffuser [33]

for additional security (see also section 5.1). The main objective of BitLocker

is to protect against the compromise of data stored on computers that are

lost or stolen, as well as more secure data deletion when BitLocker-protected

computers are decommissioned. On computers that have a version 1.2 TPM,

BitLocker uses the TPM to help ensure that stored data is accessible only

if the computer’s boot components are unaltered and the encrypted disk is

1BitLocker is only included in the Enterprise and Ultimate editions of Vista.
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located in the original computer.

BitLocker has three modes of operation: Transparent operation, User au-

thentication, and USB key. The first two modes require a version 1.2 TPM

to be present, and the PC to possess a compatible BIOS. The three modes

differ primarily in how the key necessary to decrypt the system volume is

provided to the operating system during the boot process.

• Transparent operation mode uses the TPM to provide a transparent

user experience. The key used for disk encryption is sealed (encrypted)

by the TPM chip, and is only released to the operating system if the

early boot files appear to be unmodified. The pre-operating system

components of BitLocker check these files by implementing a Root of

Trust for Measurement.

• In User authentication mode, the user must provide authentication

information to the pre-boot environment in order to be able to boot

the operating system. Two authentication modes are supported; either

a pre-boot PIN must be entered by the user, or a USB device must be

inserted that contains the required startup key.

• Finally, in USB key mode (which does not require a TPM), the user

must insert a USB device containing a startup key into the computer

in order to be able to boot the protected operating system. This mode

requires that the BIOS on the protected machine supports use of USB

devices in the pre-operating system environment.
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Apart from this, a variety of vendor-specific software is provided by PC man-

ufacturers with TC-enabled PCs. For example, HP provide a feature called

HP ProtectTools Embedded Security on some of their PCs. This functionality

uses the TPM to ‘enhance native Microsoft operating system file and folder

encryption and lays the foundation for authentication of TPM-enabled PCs

to the corporate network’. Similarly, IBM provides trusted computing based

enhanced security features for its PCs.

This relative shortage of available applications contrasts with the rapidly

growing academic literature on possible uses of the technology. Proposals

include uses to enhance the security of a variety of client, network and mobile

applications; we examine a sample of these immediately below.

6.2 Client Applications

Client applications performing functions such as digital signature generation

and verification, defence against crimeware, completion of private electronic

transactions, and Internet-based card-not-present transactions, could bene-

fit from the deployment of TC technologies. We briefly examine possible

approaches of this type.

The use of TC functionality has been proposed to enhance the security of the

digital signature process [7, 77]. Spalka, Cremers and Langweg [77] suggest

the use of a secure boot process to provide assurance that security critical

signature software is executing as expected on a platform. Balacheff et al.

[7] describe how platform attestation could be used to verify the state of a
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trusted display controller. Given a successful verification, an end user can

have confidence that what they see displayed on the screen is what they will

digitally sign.

Balfe et al. [10] examine how TC could be used to defend against the ever-

growing threat posed by crimeware. For example, a platform, on requesting

access to a company’s intranet, could be required to demonstrate through

attestation that it has up-to-date anti-virus software with the latest signa-

ture definitions, that its spam filters are operating correctly, and that it has

installed the latest OS security patches. Using sealed storage, an end user

can protect private data (e.g. credit card numbers) by making access to that

data contingent on a platform being in a particular state. For example, a

user could seal credit card data to a state that requires a particular banking

application to be running on the platform, and nothing else. The presence of

crimeware would change the platform state and prevent access. Secure boot

functionality could be used to detect the malicious or accidental modification

or removal of security-critical software at boot time. For example, the Subvirt

rootkit, which modifies a system’s boot sequence, could be detected by such

functionality. Software isolation enables the segregation of security-critical

software and data so that it cannot be observed and/or modified in an unau-

thorised manner by software executing in parallel execution environments.

Additionally, the presence of isolated execution environments could be used

to ensure that any infection is contained within the crimeware-infected exe-

cution environment.

The OpenTC project has developed a method using trusted computed func-
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tionality by which electronic transactions, such as online banking, can be se-

curely performed with well-known and trusted entities. In this case a system

is defined as ‘secure’ when “(a) a user can validate a given virtual machine

that is used for commercial transactions and can convince others of its in-

tegrity, and (b) that the user’s secrets are securely stored throughout the

life-cycle of the virtual machine” [44].

Two trusted computing-based schemes have been proposed to help prevent

phishing attacks, network redirection to fake web servers, exploitation of

client software vulnerabilities, and/or modification of a client configuration.

In both solutions an isolated execution environment is used to compartmen-

talise a browser on which the private electronic transaction (PET) application

runs, so that it is isolated from all other software executing on the platform.

Platform software, up to and including the isolation layer (i.e. the Trusted

Computing Base (TCB) of the client platform which is assumed to be cor-

rect) and the compartment running the browser for the PET application, are

measured during an authenticated boot.

In the first solution, which requires modifying both the client and server

methods for completing web transactions, the system is configured so that

the trusted compartment in which the browser is running looks different

from any untrusted compartments running on the platform. In addition, the

appearance of the browser changes when connected to the correct website (i.e.

following a successful TLS connection). Clients are required to attest to their

state, and all outbound traffic is routed through a dedicated compartment

(regarded as part of the TCB and therefore correct) which only forwards
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traffic to a specified list of trusted websites.

The other solution only involves modifying the client method for completing

web transactions. In this case the trusted compartment is securely booted,

and a user’s credentials are sealed to the trusted compartment so that they

can only be released when the compartment is connected to the correct web

site. Identification of the web site is triggered by a successful TLS server

authentication.

Balfe and Paterson [12] examine how the staged roll-out of trusted comput-

ing technology, beginning with ubiquitous client-side TPMs and culminating

in trusted computing with processor, chipset and OS support [13], can be

used to enhance the security of Internet-based ‘cardholder not present’ trans-

actions. In [13], a system that makes use of the full spectrum of TC tech-

nologies to securely emulate point-of-sale Integrated Circuit Cards compliant

with the Europay Mastercard and Visa (EMV) specifications [27, 28, 29, 30]

is described. Emulation of EMV-compliant cards confers tamper-resistance

properties that are normally associated with physical EMV card use at point-

of-sale terminals, making it possible to demonstrate card ownership and card-

holder authentication.

Further client applications are described in [37, 44, 59, 93].

6.3 Network Applications

The use of trusted computing functionality has also been proposed to harden

network access control, to support secure single sign-on solutions [57], to se-
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cure peer-to-peer networks [11, 43, 73, 74], to improve the security and pri-

vacy of a biometric user authentication process [21], and to support identity

management [52, 53]. A number of authors have also considered trusted com-

puting’s applicability to the agent paradigm [25, 58, 61, 66] and grid security

[48, 49].

Attestation features form an important focus of the TCG’s Trusted Net-

work Connect (TNC) specifications [89]. TNC offers a way of verifying an

endpoint’s integrity to ensure that it complies with a particular predefined

policy before it is granted network access. The process of checking end-point

integrity for compliance with policy occurs in three distinct phases: assess-

ment, isolation and remediation. The assessment phase involves a platform

attesting to its current state. A server examines this attestation, compares

the platform’s integrity metrics to its network access policies, and as a result

allows access, denies access or places the platform in an quarantined network

(isolation). In this latter case, a platform would typically be able to obtain

the requisite integrity-related updates that will allow it to satisfy the server’s

access policy and be granted access.

Trusted computing functionality could also be used to support secure single

sign-on solutions [57]. Single sign-on enables a user to authenticate only once

to an Authentication Service Provider (ASP), and then subsequently request

services from a variety of Service Providers (SPs) without necessarily re-

authenticating. Information about the user’s authentication status is handled

between the ASP and the desired SP transparently to the user. As described

in [57], the end-users computing platform could itself play the role of the
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ASP. In this case, authenticated boot, protected storage, and attestation

functionality could be used to enable an SP to check the authenticity of

the user’s TP and the integrity of its software state before trusting any

authentication assertions.

Trusted computing has also been suggested for use in securing peer-to-peer

networks [11, 43, 73, 74]. Balfe, Lakhani and Paterson describe a pseudony-

mous authentication scheme for peers based on DAA, and extend this scheme

to build secure channels between peers for future communications.

Chen, Pearson and Vamvakas [21] examine how trusted computing function-

ality could be used to improve the security and privacy of a biometric user

authentication process in a distributed environment. A user can establish

trust in a biometric system by verifying the state attested to by the system,

and the user can hence trust that the system (incorporating both reader and

platform) will not disclose his or her sensitive biometric information to an

unauthorised entity.

Mont et al. [52, 53] describe a system supporting identity management. This

system obfuscates user information before it is sent to external entities, and

associates policies with the obfuscated data detailing the associated con-

straints on disclosure. The system enforces tracing and auditing of disclo-

sures to increase a receiver’s accountability to a trusted third party. Trusted

computing functionality enables the owner of the private data, the recipient

of the private data, and any third party users to verify the integrity of all

parties with which they must interact, prior to the disclosure of any sensitive
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information.

A number of authors have considered trusting computing’s applicability to

the agent paradigm [25, 58, 61, 66]. The use of trusted hardware to protect

mobile agents can be traced back to Wilhelm et al.’s work [92] on adding

trusted third parties (in the form of an isolated hardware environments)

to host systems. In many ways this work was rather prophetic, in that

the requirements for trusted hardware are very much mirrored by trusted

computing. Wilhelm et al. define a Trusted Processing Environment (TPE)

to consist of a CPU, RAM, ROM, and non-volatile storage, all of which

execute within a virtual machine. An agent executes within this environment,

and hence the host OS will not be able to observe its execution. When it

was proposed, Wilhelm’s system would have been proprietary and expensive;

however, this is no longer the case, as TPMs and LaGrande/Pacifica enabled

hardware will soon be ubiquitous in the marketplace.

The use of trusted computing in agent systems has also been proposed in

[25, 58, 61, 66]. Both [25] and [58] deal with the use of non-mobile agents

to help preserve user privacy. In [61] a number of proposals are made to

enhance privacy protection for mobile applications. Each uses sealed storage

functionality and exploits the benefits of the ability to recognise when a plat-

form will behave as expected. Recently [66], a trusted computing enhanced

mobile agent platform called SMASH was proposed. In this system, trusted

computing is deployed to form a middleware-based instantiation of some as-

pects of Wilhelm et al.’s scheme [92]. In [8], the TPM’s sealing mechanism

is used in various ways to protect security critical functions within a mobile
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agent. The use of sealing in this context provides a mechanism to enable a

mobile agent to securely migrate from one platform to another, whilst re-

taining a guarantee that the next visited platform will behave as expected

to meet the agent’s objectives.

The application of trusted computing to Grid Computing has been widely

discussed (see, for example, [23, 24, 50, 94]). Much of this work aims to

prevent or detect resource provider misbehavior. Mao et al. [19] propose

Daonity, a system to establish a relocatable key, which enables controlled

group sharing of encrypted content. Löhr et al. [48] propose a scheme in

which resource providers publish attestation tokens containing public keys

from non-migratable TPM key pairs and the platform states to which private

key use is bound. Each token is signed to prove that it was produced by an

authentic TPM.

6.4 Mobile Applications

Whilst trusted computing technology is already becoming commonplace in

new PCs, at least as far as the inclusion of TPMs is concerned, the situation

is not so advanced for other types of platform. In particular, whilst many

potential applications for the technology can be identified for mobile devices

(e.g. PDAs, smart phones, etc.), the inclusion of TPMs in such platforms has

yet to occur.

Indeed, for a variety of reasons, including cost and complexity, it would

appear that trusted computing technology may be implemented in rather
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different ways in mobile devices. In particular, it seems that such devices

may not include an identifiable separate TPM, but instead the functionality

of the TPM could be implemented using a combination of trusted hardware

functionality built into a mobile platform and software. How this might be

achieved will probably vary widely from manufacturer to manufacturer.

The TCG has always had the mission of providing specifications for any type

of device that connects to a network. However, the initial standardisation

work centred around the specification of the TPM and a standard set of APIs

which provide an abstraction of the TPM to software developers/vendors.

More recently, the baseline TCG specification set has been expanded by

platform-specific working groups to include specifications describing specific

platform implementations for PC clients, servers, peripherals and storage

systems.

One such working group is the TCG Mobile Phone Working Group (MPWG),

the main challenge for which is to determine the ‘roots of trust’, see section 3,

required within a trusted mobile phone. In order to identify the capabilities

required of a trusted mobile phone, a number of use cases have been identified

by the MPWG, whose secure implementation may be aided by the applica-

tion of trusted platform functionality. Among these are SIMLock, device

authentication, mobile ticketing, mobile payment, and robust Digital Rights

Management (DRM) [80]. As stated by the MPWG [80], the use cases lay a

foundation for the ways in which:

• the MPWG derives requirements that address situations described in
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the use cases;

• the MPWG specifies an architecture based on the TCG architecture

that meet these requirements; and

• the MPWG specifies the functions and interfaces that meet the require-

ments in the specified architecture.

In 2006, the MPWG published the TCG Mobile Trusted Module (MTM)

Specification [84]. It is assumed that a mobile platform will typically contain

multiple MTMs to support multiple mobile device stakeholders. It is envis-

aged that each MTM will provide a subset of the TPM v1.2 functionality.

Some MTMs may also contain additional functionality to ensure that parts

of the device boot into a preset state (i.e. secure boot functionality) [82].

More specifically, two types of MTM have been defined.

A Mobile Local-owner Trusted Module (MLTM) supports uses (or a subset

of uses) similar to those of existing v1.2 TPMs (controlled by an entity with

physical access to the platform). Some TPM v1.2 functionality may not be

supported because of the restrictions inherent in today’s phone technologies

[82]. The use cases described by the TCG in [80] have been analysed, along

the lines of the analyses given in [34], in order to determine the subset of

functionality required within an MTM to support them.

A Mobile Remote-owner Trusted Module (MLTM) also supports a subset of

uses similar to those of existing v1.2 TPMs. It moreover enables a remote

entity (such as the device manufacturer or network operator) to predetermine

the state into which some parts of the phone must boot [82].
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We focus here on three specific use-cases, namely robust implementations of

OMA DRM v2, secure SIMLock, and secure software download.

6.4.1 OMA DRM v2

The OMA DRM version 2 specifications describe a DRM system for a mobile

environment [56]. It is supported by a ‘trust model’ which has been defined

by the Content Management Licensing Administrator for Digital Rights Man-

agement (CMLA DRM). Such a trust model enables a rights issuer to obtain

assurances about the robustness of an OMA DRM v2 implementation on a

mobile device [56].

The following trusted computing functionality could be used to meet the

robustness rules defined by the CMLA. While TC functionality cannot guar-

antee the integrity of the OMA DRM v2 agent while it is being stored, a

secure boot process can help detect malicious or accidental modifications or

removal. Stored security-critical data associated with the OMA DRM v2

agent requiring integrity protection can also be verified as part of a secure

boot process.

Alternatively, sealed storage functionality could be used to detect the mali-

cious or accidental modification or removal of the mobile device OMA DRM

v2 application while in storage, and indeed, to store data and/or keys which

need to be confidentiality and/or integrity-protected. It can also ensure that

sensitive data is only accessible by authorised entities when the mobile de-

vice is in a predefined state, for example when a legitimate OMA DRM v2
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application is executing in an isolated execution environment. Isolation tech-

nologies, in turn, enables security-critical software and data to be isolated

in a secure execution environment, so that it cannot be observed and/or

modified by software executing in parallel execution environments.

A good quality random number generator is provided by a TPM, enabling

the generation of non-repeating unpredictable nonces for use in the OMA

DRM protocols. The TPM can also be used to provide accurate time source

synchronisation, as described in [85].

6.4.2 Secure SIMLock

Mobile device personalisation, or SIMLocking (see [1]), enables a device to

be constrained to operate only with (U)SIMs associated with a network, net-

work subset, service provider, corporate customer, or, indeed, with a unique

(U)SIM; this is achieved using a pre-defined series of personalisation cate-

gories. Each category has an independent personalisation indicator, used to

show whether a particular personalisation category is active (on) or deacti-

vated (off). An independent personalisation code or code group is defined for

each category; this indicates how the device is personalised for this category

(e.g. which networks the device will work with).

When a (U)SIM is inserted into a device, or when a device is powered on,

it checks which personalisation indicators are set to ‘on’. The personalisa-

tion agent then reads the (U)SIM, and extracts the required code(s)/code

group(s). The code(s)/code group(s) are then verified against the list of
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values stored on the mobile device. The mobile device then responds accord-

ingly, displaying a message of success or failure to the device user.

Unauthorised modification or removal of the device personalisation agent

cannot be prevented using trusted computing technology. However, while

the software is stored, secure boot functionality can be used so that, at

start-up, a measurement of the device personalisation agent software is veri-

fied against an expected value. This enables any unauthorised modification

and/or removal to be detected. Any security-critical data requiring integrity

protection, such as network, network subset, corporate and service provider

codes or code groups and indicators, can also be covered by the secure boot

process. Isolation technologies can be used to ensure the integrity of the

personalisation agent, and that any security-critical data is protected while

in use on the device.

Alternatively, personalisation codes/code groups, personalisation indicators

and control keys could simply be sealed to an isolated execution environment

which hosts a device personalisation agent. In this way, security-critical data

can be both integrity and confidentiality-protected while stored. If the per-

sonalisation agent, and/or the supporting environment to which the data is

sealed, is modified, then the security-critical data will be inaccessible. While

sealing ensures that data is released into a predefined execution environ-

ment, isolation technologies are necessary to ensure that both the device

personalisation agent and the security related data remain confidentiality

and integrity-protected while in use on the platform.
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6.4.3 Secure Software Download

A Software Defined Radio (SDR) is a communications device “whose opera-

tional modes and parameters can be changed or augmented, post manufac-

turing via software” [76]. This implies that the device can be reconfigured

to communicate using multiple frequency bands and protocols, or upgraded

in a low cost and efficient manner. Trusted computing functionality can be

deployed to protect the downloaded SDR software from the host and, indeed,

the mobile host from the downloaded software.

TC mechanisms could be used to confidentiality-protect the reconfiguration

software in transit between the software provider and the end host, while

stored or executing on the end host, and to ensure that only the intended

recipient device can access the software. [35, 36] describe a secure software

download protocol using trusted computing functionality, or, more specifi-

cally, sealed storage, platform attestation, and isolation techniques.

Alternatively, if a more traditional mechanism such as SSL/TLS is used to

provide secure download of the reconfiguration software, TC functionality

can be used to ‘harden’ the SSL/TLS implementation. In this case, prior to

the completion of any SSL/TLS protocol, the TPM is used to generate the

client-side (SDR device) key pair for SSL authentication, which is bound to

a set of integrity metrics so that the private key can only be used by the

TPM on which it was generated and when the TPM host platform is in the

required state. This hardened implementation of SSL/TLS gives the software

provider some assurance that the SDR device’s SSL/TLS private key is stored
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securely and cannot been stolen. Evidence of the device’s ability to provide

an isolated execution environment for the downloaded software can also be

demonstrated.

A capability exchange can be completed by the network and the SDR prior

to software download to ensure that the appropriate software entities and

parameter sets are selected for a particular SDR device. The use of platform

attestation could be used to ensure that the reports sent by the device are

accurate.

While the integrity of stored security-critical host software cannot be ensured

using TC functionality, a secure boot procedure can be used to help detect

its malicious or accidental modification or removal. TC functionality also

enables the isolation of security-critical software in a secure execution envi-

ronment so that it cannot be observed or modified by software executing in

a parallel insecure execution environment.

Also, if the downloaded software is isolated in its own execution environment,

then any malicious behavior can be controlled and its effects limited. If

sealed storage is used by the end user to protect private data (e.g., credit

card numbers), then the impact of malicious software may be lessened, as

it cannot gain access to security sensitive data which has been protected.

On reconnection to a commercial network, a trusted SDR device could be

required to attest to its state so that a decision can be made as to whether

or not the device should be authorised to access the network.
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7 The Future

We conclude this paper by briefly considering the future of trusted computing

technology. Perhaps the most fundamental question regards whether or not

the technology will succeed in its objectives. That is, will it really be possible

to use trusted computing to determine the state of a remote PC, and to

seal data to the state of a PC with confidence that this sealing will work

effectively. For this to be possible requires a number of obstacles to be

overcome, notably:

• the hardware must become ubiquitous;

• the infrastructure necessary to support use of trusted computing must

be established (as discussed in section 5.4); and

• virtualisation technology must become widely available on desktop and

notebook PCs, using techniques which enable the virtualisation layer

to be verified using trusted computing.

With regard to the first point, the prospects are good, since the technology

has already been deployed in desktop and notebook PCs. Moreover, work is

under way within the MPWG to support the provision of trusted computing

functionality on mobile phones, suggesting that the technology will become

even more widespread.

Overcoming the second obstacle is more problematic, although within a cor-

porate setting the obstacles may be much less significant. Indeed, it seems
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likely that the technology will succeed first in a corporate setting rather than

for home use.

The third issue is almost certainly the most difficult of all. Despite much

activity over the past few years, including white papers and announcements

at conferences and shows, Microsoft has provided only very limited support

for trusted computing in Windows Vista. The NGSCB vision appears to be

a long way from being realised. Microsoft’s future plans in this direction are

far from clear.

However, much greater support for trusted computing technology is emerging

from the open source community, and from collaborative research projects

such as OpenTC and EMSCB. Open source trusted virtualisation layers are

being developed by both the Xen and L4 communities. Thus it may well be

that open source users will be able to enjoy the benefits of trusted computing

based security long before Windows users — we must wait and see!
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