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ABSTRACT of "On Divisions and Decompositions of 1-designs"”

by C.J. Mitchell.

A Point Division of a 1-(v,k,r) structure S is a partition
of the points of § into classes such that the number of blocks
through two points depends only on the classes to which they
belong. This generalises the notion of a Group Divisible (GD)
design and a number of results are obtained for Point Divisions
of 1-designs which have well-known results for GD designs as
corollaries.

Point Divisions are also closely linked to tactical
divisions; in fact a tactical divisicn of a 1~-design is a tactical
decomposition whose point classes form a certain special type of
Point Division. Using this fact we obtain simple proofs of
certain results on designs admitting tactical divisions. We also
examine 2-designs whose duals admit Point Divisions, and show that
this is equivalent to considering 2-designs having intersection
number k-r+X.

Using results obtained for Point Divisions of 1-designs, we
go on to establish new results on GD designs, in particular we
derive information about the duals of GD designs, and the
properties of GD designs having certain special dual properties.
We also obtain necessary and sufficient conditions for a
symmetric GD design to have a GD dual.

Finally we give a general recursive method of construction
for 1-structures admitting Point Divisions having constant class
size. This method is used to construct both GD and 2-designs,
and we use it to obtain two infinite families of strongly divisible
2-designs. One of these infinite families consists of quasi-
residual desiens, and we show that they are in fact residual
designs. This establisheé the existence of an infinite family of

symmetric 2-designs.
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CHAPTER 1 - PRELIMINARY DEFINITIONS AND RESULTS

Unless otherwise stated, all results may be found in

Dembowski, [19].

1.1 Basic Definitions

An Incidence Structure (or a structure) is an ordered

triple (P,B,I), where P and B are finite non-emptv sets whose
elements are called points and blocks respectively; (we will
use upper case latin letters to denote points and lower case
latin letters to denote blocks). I SPx B, and if (P,x) €T
then the point P is said to be incident with the block x. It
will often be convenient to associate a block with the set of
points with which it is incident; and so we will frequently
write P € x or PI x, and sav P is on x or x contains P. We
will also almost invariably use v and b to denote the number of
points and blocks respectively.

A structure S is said to be uniform if there exists some

constant k (0<k<v}) such that every block is incident with precisely

k points. A t-structure, S (t>0), is a uniform structure having

a constant A such that every set of t points is incident with
precisely A common blocks. We will then say that S is a
t-(v,k,)) structure. Note that a C-structure is just a uniform

structure.

Result 1.1.1 If S is a t-(v,k,A) structure then, for every s

satisfying 0<s<t, S is an s—(v,k,ls) structure,

v~5) /(k-s

where A = A((_2 A

In any t-structure we have b = XO, and if t > 1, we set

T = A1. Result 1.1.1 immediately gives :=

o
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Corollary 1.1.2 Suppose S is a t-(v,k,)) structure. Then

(i) If t > 1 then bk = vr;
and (ii) if t > 2 then Xz(v-l) = r(k-1).

Clearly Result 1.1.1 indicates the non-existence of
t-(v,k,A) structures for most choices of v,k and A ; since each
A;€0<s<t) must be an integer.

We now define a class of structures which play a central
role in this thesis.

A design is a uniform structure satisfying :-

(i) No two distinct blocks are incident with the same

set of points; and

(ii) No two distinct points are incident with the same

set of blocks.

As stated above, we will often identify a block with the
set of points on it and, by (i), in a design the point set
uniquely defines the block.

A t-design is a t-structure which is also a design. For
a 1-design it is not difficult to show that » = 1 if and only
if k¥ = 1, and such a design is of little interest. So we will
often assume that r,k>1. Also note that for a 2-(v,k,A) design,
axiom (ii) of the definition of design is unnecessary. For if
two distinct points are incident with the same set of blocks, we
immediately have r =\, and hence (by Corollary 1.1.2(ii))

v = k, which contradicts the definiticn of uniform.

A 1-(v,k,r) design is said to be trivial if every subset of
k points is a block. Clearly a trivial design is a t-design
for every t<k.

The Connection Number of two points of a structure is the

number of blocks incident with them both, and, dually, the

Intersection Number of two blocks is the number of points
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incident with them both. If x,y are two blocks we will often
write |xNy| for the intersection number of x and y; (again
considering x,y as point sets).

Finally we define a notion of connectedness. In a structure

S = (P,B,I), a chain between two elements X,Y (X,YEPUB) is an

ordered tuple (XO’Xi’XZ""’Xn) of elements of PUB such that

X = Xq, ¥ = Xn and Xi-lIXi for every i(1<i<n). Two elements of
PUB are connected if there exists a chain between them, arnd a
structure S is connected if every pair of elements of PUB are

connected.

1.2 Incidence Matrices and Granhs

An incidence matrix A = (aij) for a structure S is avxb

matrix with its rows indexed by the points of S and its columns

indexed by the blncks of S, such that aij = 1 if the point

th

corresponding to the i~ row is incident with the block

corresponding to the jth

column, and aij = 0 otherwise. If we
have some partitinn 31,...,Ed nf the points (or blocks) of S,

then an incidence matrix associated with this partitinn is

arranged so that the first lgil rows (or columns) of A correspond

to the prints (blocks) of P,, the next [22{ rows (columns) of A

correspond to the points (blocks) of 22, and s» on.

If S and U are two structures, then an isomorphism a from
S onto U is a 1-1 mapping from the points of S onto the peints
of U and from the blocks of S onte the blocks of U, such that

PIx if and only if P%T x%. If there exists an isomorphism

from S onto U then S and U are isomorphic and we write S = U

Result 1.2.1 If S, U are structures, and A,B are incidence

matrices for S and U respectively, then S # U

if and only if there exist permutation matrices P,Q with A = PBQ.
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Thus if S is a structure, all incidence metrices for S
are equivalent, and hence have the same rank. So we define the
rank of a structure § to be the rank of one (and hence all) of
its incidence matrices.
We now state certain elementary facts about a structure in
terms »f its incidence matrix.

Result 1.2.2 If A is the incidence matrix of a structure S,

then :-

(1) § is uniform if and only if jA = kJ;
(ii) S is a 1-(v,k,r) structure if and only if
A" = riT and jA = kj; and
(iii) S is a 2-(v,k,;\) structure if and only if

JA = kj and AAT = (p-a)T + AT
where J is the all +1 matrix, I is the identity matrix, and
J is the all +1 (row) vector (of appropriate sizes).
Note also that the off~diagonal entries of AAT and ATA are

the connection and intersection numbers »f the structure S.

These matrices 2re referred to as the connection and intersection

matrices respectively.

Much information may also be derived from the eigenvalues

T

and eigenvectors of the matrices AA™ and ATA.

Result 1.2.3 (Shrikhande and Bhagwandas, [45}) If S is a

1-(v,k.r) structure with incidence natrix A,
then:-
(i) rk is an eigenvalue of AA?.
(ii) rk is a simple eigenvalue of AAT if and only if S

is connected.
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The proof of this result uses the following elementary
results about real matrices : if x is an eigenvector for AAT

TA with

with eigenvalue ¢#0, then xA is an eigenvector for A
eigenvalue ¢ AAT and ATA have the same non-zero eigenvalues
with the same multiplicities.

We also obtain :=-

Lemma 1.2.4 If A is an incidence matrix of a 1-(v,k,n)
+

structure S with r,k>1), then AAT j 7 has just
one eigenvalue ¢say, if and only if S is a 2-(v,k,A) structure;
in this case ¢ = r-A.

Proof If S is a2 2-structure then AAT = (r-a1 +AJ, and so
AAT has eigenvectors j, g, (1<u<v-1) with eigenvalues rk and

+y-1-+ +y-y-1-+
r-A; where e = (0---01 -1 0 -=- 0). So v-1 is the only

eigenvalue of aaT j% .

If ¢ is the only eigenvalue of AAT i‘ » then any vector
orthogonal to j must be an eigenvector of AAT with eigenvalue ¢.
Hence, in particular, guAAT = ég  for every u (1<u<v-1).  Hence
all off-diagonal entries are the same (and non-zero since r,k>1).
T.e. 8 is a 2-structure and ¢ = r-A. *®
Remark This Lemma is essentially the same as Corollary 1.2
of Kageyama and Tsuiji, [30], although it is stated here in a
slightly different form.

So the eigenvalues of a 2-structure S are rk and r-Q with
multiplicities 1 and v-1, and hence, since r>X by 1.1.2 (ii),

S has v non-zero eigenvalues.

Immediately we have :-

Result 1.2.5 (Fisher's Inequality) If S is a 2-(v,k,A)

structure with incidence matrix A, then :-

v = rank AAT = rank A = rank S < b.
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If S is a 2-(v,k,\) structure with v=b, then §mis said
to be & symmetric 2~structure.

Finally we show a relationship between graphs and certain
structures. A graph G (here a graph means an undirected graph
without loops or multiple edges) is regular if every vertex is
adjacent to a constant number of vertices. This number is
called the valency of G. If Pl""’Pv is some labelling of
the vertices of a graph G (on v vertices), then the adjacency
matrix T = (tij) of G corresponding tn this labelling is a vxv
matrix with tij = 1 if Pi and Pj are adjacent and tis = 0

]

otherwise; (t;. = 0 for every i, 1<i<v). TFor the results

on graphs quoted below, see for instance, Cameronh and van Lint,
[171.

Result 1.2.6 If 6 is a graph with adjacency matrix T, then

G is regular if and only if iT = ﬁoi, where 6,
is the wvalency of G.
A graph G is complete if'every pair of vertices are adjacent

and G is null if it has no edges at all. The complement C(G)

of a graph G is the graph with the same vertex set as G, such
that two vertices are adjacent in C(G) if and only if they are
not adjacent in G.

A repular graph G (G not null or complete) is said to be

strongly regular if and only if for every pair of vertices P,P :

the number of vertices Q adjacent to both P and P is a constant
depending only on whether P and P’ are adjacent or not. We

‘ L]
shall refer to the eigenvalues of a graph 6, meaning the

eigenvalues of one (and hence all) of its adjacency matrices.
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Result 1.2.7 f, graph G is strongly regular if and only if G

1

is regular and T|i®* has two eigenvalues;
these eigenvalues will be denoted by 91,62 throughcut.

The disjoint union of ¢ complete graphs on m vertices each
is a strongly regular graph denoted by T'(c,m). The complement

of T(c,m) is the "complete c-partite graph".

Result 1.2.8 A strongly regular graph with eigenvalues 60

(the valency), 8, and 8, (8,>6,) is a I'(c,m) if
and only if 91= 90.

Result 1.2.9 If 6 is a strongly recular graph on v vertices

with eigenvalues 80 (the valency), 61 and 62;
then C(G) has eigenvalues v—1-6O (the valency), —1-91 and —1~62
with the same multiplicities.

Suppose S is a 1-(v,k,r) structure with two connection
numbers Al and A25 say. Then we may form the graph G(E,Xi),

called the point graph (with respect to xi), with vertices the

points of S, and with two vertices adjacent if and only if they
have connection number X.. Then it is easy to see that G(B,A )
and G(g,lz) are complementary graphs. If A is an incidence
matrix for S, then we have :-

Lemma 1.2.10 If S is a 1-(v,k,r) structure with two connection

numbers Al and 12 then :-
(1) AT = (pA T 4 A50 + (A;=A,)T, where T is an
adjacency matrix for G(E,xi).
(i1) G(B,A;) is regular with valency ((v—i)kj-r(k-i)y(lj—li).
Proof (1) is straightforward, and, since iAAT = rkj (by Result
1.2.2 (1i)) we have i(li—kj)T = (rk-(r-kj)-vkj)i,

and (ii) follows. -4
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Finally, 2 similar argument shows that if a 1-structure

S has two intersection numbers PysP,5 then it is possible to

define the block graph of S (with respect to pi), G(g,pi),

and this graph is regular as above.
We also note that if a 1-structure $ has two connection

numbers then G(g,ki) is strongly regular (i=1,2) if and only

if 8 is a Partially Balanced Design with two associate classes

(for more details see Section 1.u4).

1.3 Derived and Related Structures

Given any structure S = (P,B,I) there are many ways to
construct other, related structures from S. We list some of
thase below.

(A) The dual of S, which we dencte by S*, is the
structure (B,P,I*) where (x,P)EI* if and only if (P,x)E€I;
i.e. the roles ~f points and blocks are interchanged.

Result 1.3.1 If S is a structure then :-

(i) 8 is a 1-(v,k,r) structure if and cnly if S* is
a 1-(b,r,k) structure.
(ii) 8 is a 1-(v,k,r) design if and only if S* is a
1-(b,r,k) design.
Clearly (S*)* = S, and if A is any incidence matrix for S,
then AT is an incidence matrix for S%.
Hence, by Lemma 1.2.4%, if S is a symmetric 2-(v,k,})
structure, then $* is a 2-(b,r,k-r+i) structure. But b=v and
hence r=zk (by Corollary 1.1.2 (ii)) and so S* is a 2-(v,k,})
structure. Finally A<r = k, and so § and S* are 2-cdesigns and

using Result 1.2.5 we have

Result 1.3.2 If D is a 2-(v,k,A) structure then v=b if and
. only if D* is a 2-structure; and in this case

both D and D* are 2-(v,k,A) designs.

L :
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(B) The complement of S, denoted by C(S) is the structure

(P,B,PxB-I); i.e. a point is incident with a block in C(S) if
and only if they are not incident in S.

Clearly C(C(S)) = S, and if A is any incidence matrix of
S, then J-A is an incidence matrix of C(8).

Using Result 1.2.2 we immediately have :-

Result 1.3.3 If S is a structure then :=~

(i) S is uniform with k points on every block, if and
nnly if C(S) is uniform with v-k points on every
block,

(ii) 8 is a 1-(v,k,r) structure if and only if C(S)is a
1-(v,v=k,b~r) structure;

(iii) S is a 2-(v,k,A) structure if and only if C(S) is a
2~(v,v-k,b~2r+}) structure (given 2<k<v-2); and
| (iv) S is a design if and only if C(S) is a design.

Note that if § is a uniform structure with k > 5 then C(S2

N Nf<

v . .
has k < 5 and so we will sometimes assume that k < for

uniform structures.

(C) Suppose that P is some point of S. The Internal

Contraction §D of S is the structure (P-{P},B' ,I') where B

is the set of blocks of B which are incident with P, and I'is
defined so that {P,x)EI' if and only if (P,x)EI. Similarly we

define the External Contraction §P nf § to be the structure

(P-{P},gﬁ;x”) wheare Qﬁ is the set of blocks of B which are not
ineident with P(B"=B-B') and I" is defined as for I'.
In an analarcus way we define the internal and external

structures S, and S* where x is some block of S. So §x consists
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of the pcints incident with x ancd all the blocks of S other

than x (with the "same" incifence as $), anA S* has as point

set the pocints of S not incident with x, and all the blocks of

S less x (again with incidence as in 9).

We may now state

Result 1.3.4 If 8

(i) If S is a t-

is a uniform structure with k > 2, then :-

(v,k,A) structure (t>1), then §P is

a (t=1)-(v-1,k~1,1) structure.

(ii) If S contains no two blocks incident with the same

point set, then neither daes S.e

(iii) If D is a t-

(v,k,X) design (t>3), then D_ is a

(t=1)=(v=-1,k=-1,)) design.

Result 1.3.5 If S

(i) If S is a t-

is a uniform structurc with k < v~2, then:-

(v,k,A) structure (t>1), then §p is a

(t—i)-(v—l,k,kt_1~k) structure.

(ii) If S contains no two blncks incident with the same

point set, then neither dces §P.

(iii) If D is a t-

Y

(V,kﬂ\) design (t=2’kf. 5

or t < 3) then

QP is a (t-1) - (v-l,k,lt_i—k) design.

The structures Sy

pPleasant properties:
if S is a 2-desisn.
design of S, and if a
a structure S, then D
In fact, for any

SX

is uniform if

exactly the same number of points. If this occurs, and

and §x Ao not necessarily have such

in fact they need nnt be 1-structures even
If §x is a design it is known as a residual
design D is isomorphic to a residual design of

is said to be embeddable in S.

uniform structure S,

and only if every block intersects x in

{wn
f1e
0
]

2-structure, then every two blocks of S intersect in the same

number of noints, and

s0, if a design D is embeddable in a
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Z-structure S, S must be a symmetric 2-desien (using Result 1.3.2).
We may now state :

Result 1.3.6 If D is 2 symmetric 2~(v,k,A) design

(k<min {3,v-2}), then D* is a 2-(v-k,k-A,A)

design for any block x of D.

k
7

althecugh it may contain repeated blocks (i.e. two blocks incident

Remark If v > will still be a 2~(v-k,k~A,A) structure,
with precisely the same set of points).

It is now possible to consider which designs may be
embe-ddable in symmetric 2-designs; and we have :-

Result 1.3.7 If a 2-(v,k,X) design D is embeddable in a

symmetric 2-design then k-r+i=z0, or ,
equivalently, b-v = pr-1.
If a 2-design satisfies b-v = r»-1 it is called a

Quasi-residual Design, and indeed for A = 1 or 2 every quasi-

residual 2-(v,k,A) design is a residual desirn of a 2-(v+k+),
k+A,A) designi seec Hall and Connor, [ 21}. This result is not
true for A > 3, see, for example, the Adesign of Bhattacharya, [ 101.

A considerable amount of work has been AdAone on establishing
sufficient conditions for certain quasi-residual Aesigns to be
residual, sece for instance, Beker and Hazmers, [7]; Bose,

Shrikhande and Singhi, [16] and Singhi and Shrikhande, [u47].

1.4 Group Divisible 1-designs

A considerable proportion of this thesis will be devoted
to consideration of group divisible designs and certain related
structures. In this section we zive gome of the basic results on

these designs; we will assume r,k>1 throughout.

I 0 L wmedgacag a clec il 4o Be YN



16~

A group Aivisible 1-desirn (or just a @D desien) is a

1-(v;k,v) cesign admittineg a partition of the points into A
classes 31""’26 (d<v) such that siven two moints P,Q(PEgi,
QEBj) the connection number of P an? @ is a constant dependine
only on whether i=j or not. The connection number »f two
points of the same roint e¢lass and the eonnection number of
points of Adifferent classes will be Adencted by A and A’
respectively: Awe assume throughout that it} . It can be shown
that in a groun Aivisible desisn there exists an 2>1 so that
|£i!=2 for every i.

If D is a 6D deéign, and A is an incidence matrix for D

assnociated with the point partition of D, then :-

s h
™. \
- o [
2 P\_\ U A
1 LR
A
AAT = | i A
8 B i AT
3 v |
T I’ F
1 § M r\ 4
A N \ i
. N ]
. |
T
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. « u-1 > - v-u-1 »
So, by inspection, if ey © (00 ...01-1200...0)

+ (w=-1)8+ « 9 >+ < 9 > «(v-w-1)2~»

and fw =((00...0112 ...1-1+-1...-200 .., 0); then :-

. T ! .
JAAT) = ((v-2)X +(R-D)A+p)]
gu(AAT) = (p-Me,  (1<ugv-1; v¥tg for any t)

£,088T) = (rr(a-DA-2VOE (1<u<s-1).

But jA = kj and iAT = r] (Result 1.2.2.(ii)), and so
i(AAT) = rkji. Hence :-

Result 1.4.1 If D and A are as above, then :-

(i) v = 4L

(ii) (v=2)71" +(2-1)X = r(k-1):

(iii) The eigenvalues of AT are : (r-2),(rk-v)') and rk
with multiplicities v~2,2-1 and 1 respectively; and

(iv) lAA?[ = rk(r-2) V"% (pre-vn’ HEL,

Since r,k>1, Result 1.2.3(ii) gives :-

Result 1.4.2 If D is GD then D is connected if and only if

A >0,
So we will normally assume A >0 for GD desipns, or otherwise
D consists of the Aisjoint union of 4 2-(2,k,)\) Adesieons.
Again from Result 1.4.1, since AAT is nositive semi-definite,

we have 1=

Result 1.4%.3 (Bnse and Connor, [141) If D is GD then rk>viA'.

By definition of desien, r>A, and so if D is GD, then
rk>vA' if and only if AAT is non=-singulAar. This led Rose and

Connor (in [141) +to classify GD Aesisns as follows :-
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Result 1.4.4 If D is GD then either :-

(i) vk = vpx' an‘d b>rank A = rank AAT = v-d+1 (in which

case D is said to be Semi-regular GD, or SRGD), or

(ii) rk>vA’' and b>rank A = rank AAT = v (in this case D is

said to be Regular GD, or RGD).

In fact Bose and Connor's definition of GD desisns allows
two points to be incident with the same set of blocks, and hence
allows the case r=X. Such designs they call Singular GD
(SGD) desisns. The definition used here oes not nermit SGD
designs, and in any case it can be shown that an SGD design
consists of a 2-desisn with each point reneated £ times.

SRGD desirns may be characterised by a point class ~ block
intersection property as follows :-

Result 1.4.5 (Bose and Connor, [14]) If D is GD then D is

SRGD if and only if every block is incident
with precisely % noints of each point class.
The following is also known for SRGD Adesigns :-

Result 1.4.6 (Connor, [18}) If D is SRGD then A<)'.

We now consider the situation of equality in Result 1.4.4,

Result 1.4.7 (Roy and Laha, [ 36] ; Saraf, f 371)

If D is SRGD then b=v-a+1 if and only if D* is
a 2~design. In this case D* is a 2-(b,r,k-r+i) desien.

Result 1.4.8 (Connor, [18]) If D is RGD, b=zv and

(rk-vA' ,A=1" ) = 1, then D* is RGD with the same
parameters as D.
RGD Adesiens with b=v whose duals are not RGD with the same
parameters as D seen rare. Any 6D desien satisfying b=v is
called symmetric and necessary an? sufficient conditions for a

symmetric GD desion to have a GD dual will be obtained below.
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For an examrle of a symmetric SRGD desien whose Fual is not GD,
see Connor, [181.
Group Divisible Designs may be regarded as a special class
of Partially Balanced Desicns with two associate classes. To
defina these objects we first need the following concept.

An m-class Association Scheme on a set X (|X|=v) is a

partition A = Al’Aé""’Am (Ai#¢ for any i) nf the set 22(X) of
all two-element subsets of X, having the following pronerty.

If {x,y}€A,, then the number of zEX with {x,z}€A; and'{.v,z}ez\_j
is a constant Di? independent of the choice ~f x and vy. The

sets Ai""’Am are called the classes »f the assnciation scheme,

and if {x,y}GAi, then x and v are sajid te be s Lgsociates.
h
3

h - .
i3 = P41 for every i,j,h (1<i,j,h<m).

We immediately have »
The unique partitions of gQ(X) with m=1 and m=v(v-1)/2 are
association schemes on X, but since they are uninteresting we shall
usually assume that 1<m<v(v-=1)/2.

Result 1.4.9 Let A be an m-class association scheme on X.

Given x€X, then the number of ith associates ~f
X depends only on i and is inderendent of the choice of x. We

denote this number by ns and we have :-

m
. h . .
(i) ng = jzl Py 8:y, for every i,h(1<i,h<m);
(i1) n.p.% = nypsl = nip.d  for every 1,7,h(1<i,3,h<m);
h* ij ijh 3”ih N 5] S1.).05mi s
m
and (iii) 7} ny = v-1; where Gih is the Kronecker Delta.

i

A Partially Balanced Desicn with m associate classes

(2 PBD(m)) is a 1-design D together with an m~class association

scheme A=A, ,A,,...:A  defined on P (the point set of D) such
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that there exist constants Xl,AZ,...,Am (not necessarily
distinct) with the property that eiven {P,Q}GAi, then the
connection number of P and Q is Xi.
A 2-design is clearly a PBD(1). Alsc if G is a graph with
vertex set X, and A, ={{x,y}CX|x adjacent to y in G} ;
Ay = EZ(X) -A,, then G is strongly regular if and only if
A= {Al’AZ} is a 2-class association scheme on X. If G is a
strongly regular grarvh then the assnciation scheme obtained in
this way will be referred to as the association scheme
corresponding to G, and vice versa. Furthermcore, it is not
difficult to see that if D is a PBD(2) with association scheme
corresponding to a strongly regular graph G, then G = G(g,kl).
So a GD design is a PBD(2) with respect to the association

scheme corresnonding to T(d,2), with A1=A, Az =A' and

iR

G(P,A) r(d,8).
For a general PBD(m) we also have :~-

Result 1.4.10 The parameters of a PBD(m) satisfy

m
I Ang o= r(-1).
i=1

We shall mainly be concerned with PBD(2)'s and so we now

give the following useful Lemmas :-

Lemma 1.4.11 A 1-design D with incidence matrix A and

precisely two connection numbers, is a PBD(2) if
and only if AAT!il has two eipenvalues.
Proof Since D has two connection numbers, xl,xz, say, then
by Lemma 1.2.10 :

T

AAT = (r—lz)I + A, J + (ki-lz)T where T is an adjacency

2
matrix for G(g,li). By Pesults 1.2.6 and 1.2.7, G(g,ll) is

4
strongly regular if and cnly if T]i has two eigenvalues, and

j is an eigenvalue of T.
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But j is always an eigenvalue of T, since J is an eigenvalue
of AA?, I and J (by Result 1.2.2 (ii)). So by the above remarks,
D is a PBD(2) if and only if G(E,A2,) is strongly regular, i.e.
if and only if Tlil has two eigenvalues, and using the above
equation connecting AAT and T the result follows. 1

Lemma 1.4,12 Suppnse that D is a PBD(2), and T (the adjacency

: . 4
matrix of the graph G(P,X,)) is such that T|] has eicenvalues
64:6,(8,>6,) and JT = 8453. Then D is GD with connection numbers

AoEhys A'= A, if and only if Bg = 8y = ((v=Dh,-r(k-1))/(X,~2 ),

2 1

6, = -1, multiplicity (eo=81) = d and multiplicity (02) = v=d,

-

Proof By Result 1.2.8 6(P,A,) ¥ T(4,2) if and only if 0,=8

1.
But, by the remarks above, G(P,A,) % TI(d,2) if and only if D is
GD with X = A , X =),.

If D is 6D with A=i,, A'= A,> then, by Result 1.4.1,

15
AAT hzs eigenvalues rk,rk~vl2 and r-kl with multiplicities 1, A4-1
and v-d. By Lemma 1.2.10 :-

AAT = (r-AZ)I + AQJ + (kl-kz)T where T is an adjacency

matrix for G(E,li). So

T = [(P—AQ)I + A, - AAT}/(A2-A1) and T has eigenvalues
60 =61 = ((v—l)lz—r(k-i))/(XQ-Al) an- 62 = ((r—Az)-(r~X1))/
(kz—ll) = -1 with multiplicities 4 and v-Ad respectively; and
the Lemma follows. b

1.5 Tactical Decomnositions and Resolutions

Tactical Decompositions are closely linked to certain
generalisations of groun Adivisible 1-designs.

A Tactical Decomposition T(S) of an incidence structure

S is a partition of the points and blocks of § intc classes
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Pl""’gd and §1""’§c respectively, such that :-

(i) The number of points of P; incident with a blnck of
§j depends only on i and 3 and is denoted by Bij;
and (ii) The number of blocks of Ej incident with a point of
Ei is a constant Yij depending only on the choice of
classes.
Clearly every structure admits the trivial tactical
decomposition whose point and block classes consist of the
singleton point and block sets. We assume from now on that

every tactical decomposition is non-trivial.

A Tactical Division, T(S), of a 1-structure S is a Tactical

Decomposition whose point classes P

1""’Ed satisfy :-

(i) Given two distinect points P,Q (Pegi, QEEj), the
connection number of P and Q depends only on the
choices ~f i and j and is denoted by Aij;

and (ii) There exists a A such that lii = X for every i

(1<i<d).
For a 2-structure, the terms tactical division and tactical
decomposition are equivalent.

We may now state :=-

Result 1.5.1 (Beker, [6]) If T(D) is a tactical division of a

1-design D, then b+d > v+e.
Result 1.5.1 is a generalisation of a result of Block, [11].
Tactical Divisions satisfying b+d = vic are of special interest,

and are called strong.
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Result 1.5.2 (Beker, [61) If T(D) is a tactical division of

a 1-design D, then the following are equivalent:
(i) T(D) is strone;
(ii) The intersection number of twn distinct blocks depends
only on their block classes;
and (iii) Every pair of distinet blocks from the same bleck class

intersect in k-r+X points.

A Tactical Division with just one point class is called a

resolution, and a design admitting a resolution will be called

resolvable. By definition it is eclear that a resolvable desicn

must be a 2-design.

Result 1.5.3 (Hughes and Piper, [23]) If R(D) is a resolution
of a 2-design D, then b+1 > v+d. R(D) is strong

(i.e. b+1 = v+d) if and only if every block class contains

m = % blocks, and the intersection number of two distinet

blocks is k-r+A or %3 dermending only on whether the blocks are

from the same or different block classes resnectively.

The parameters of a strongly resolvable 2-design (i.e. a
2=-design admitting a strong resolution) may be characterised as

follows :-

Result 1.5.4 (Harris, [22}) If D is a strongly resolvable

2=-(v,k,A) design with m blocks in every block
class, then : v = umz/cz, k = um/c and A = (um-0)/(m-1)
where u= kz/v and o = Y15 for every j.

A parallelism of an incidence structure is a tactical

decomposition with one point class, satisfying Yij = 1 for
every j(1<j<c). Clearly a parallelism of a 2-design is a
special type of resolution, and in this case, when this resolution

is strong the 2-design is said to be affine.
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As a Corollary to Results 1.5.3 and 1.5.4 we have

Result 1.5.5. (Bose, [121) If a 2-design D admits a

parallelism with ¢ block classes, then

b+l > v+c. D is affine (i.e b+1

v+c) if and only if every
block class contains m = % blocks and the intersection
number of two distinet blocks is 0 or %3 derending only on
whether the blocks are from the same or different block classes
respectively. In this case D is a 2-(um2, um, (um-1)/(m-1))
design, (o=1).

An affine plane is then simply an affine design with wu=1.

The notation and definitions used here are by no means
standard. Many authors (e.g. Bose, [12]; Kagevama, [28];
Shah, [39]; and Shrikhande, [40],[411,[43}) call a structure
resolvable if it admits a parallelism.

The definition of strongly resolvable given above cnrres-
ponds to the definition of affine @=-resolvable »f Shrikhande

and Raghavarao, [uu4l, in the case when D is a 2-design. In

general a 1-design D is "affine #-resnlvable" if and only if
D* is SRGD. Also, for a 2-design, the definition of resolvability
given above is a more general notion than that of "a-resolvability";

(an «-resolution of a 1-design is a tactical decomposition with

one point class such that Yq5® @ for every 3j). In fact, in the
2-design case it corresponds precisely with the definition of

(ul,uz,...,ut)-resolvable of Kageyama, [28].




