
1

Cryptanalysis of the EPBC
authenticated encryption

mode

Chris Mitchell

Royal Holloway, University of London

http://www.isg.rhul.ac.uk/~cjm

2

Agenda

 Introduction

 Simultaneous confidentiality and integrity

 Attacking EPBC

 Completing the attack

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

2

3

Simultaneous encryption and integrity

 Both confidentiality and integrity are often required.

 Indeed, encrypting without integrity protection is now

known to be dangerous (variety of attacks).

 One simple way to provide both services is the encrypt-

then-MAC model where we encrypt the message and

then compute a MAC, using two distinct keys.

 This is very effective (if used with care), but each block

of data is processed twice.

4

Add-redundancy-and-encrypt model

 To avoid the extra work of double processing,

one widely discussed alternative to encrypt-

then-MAC is the add-redundancy-and-encrypt

model.

 Here, predictable redundancy is added to the

plaintext (e.g. a fixed block at the end) prior to

encryption, and the receiver checks for the

presence of the redundancy after decryption.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

3

5

Shortcomings of model

 The encryption method needs to be chosen

carefully (e.g., a stream cipher is bad news)!

 So does the method of adding redundancy.

– Suppose the ‘fixed block at the end’ method is used.

– Obvious dangers arise if the fixed block arises by

chance in the middle of the plaintext!

 Despite these dangers, the technique has often

been advocated.

6

EPBC mode

 One major problem with the add-redundancy-then-

encrypt approach is that commonly used encryption

modes are not appropriate.

 That is, if a mode like CBC is used, then relatively

simple forgery attacks are possible (as we show).

 We consider a mode specially designed for use with

add-redundancy-then-encrypt, namely EPBC, and

show that this mode too is subject to forgery attacks.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

4

7

Agenda

 Introduction

 Simultaneous confidentiality and integrity

 Attacking EPBC

 Completing the attack

8

CBC mode = no good!

 Having decided to use add-redundancy-and-
encrypt, the encryption method needs to be
chosen.

 It is not hard to see that CBC mode is
completely inappropriate.

 This is because ciphertext errors only
propagate in a very limited way.

 That is, changing ciphertext block Ci only
affects Pi and Pi+1.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

5

9

CBC decryption – error propagation

C1 C2

P1

Cq

P2

dK dK

Pq

dK

IV
Cq-1

10

EPBC mode

 EPBC (Efficient error-Propagating Block
Chaining) was proposed by Zúquete and
Guedes in 1997.

 It is a mode of operation in which ciphertext
errors propagate in an unlimited way.

 Designed as an improvement of a mode called
IOBC (Recacha, 1996).

 Uses an n-bit block cipher where n is even
(assume n=2m).

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

6

11

EPBC mode operation

 Uses two n-bit secret IVs: F0, G0.

 To encrypt plaintext P1, P2, …, Pt:

– perform the following for i = 1, 2, ..., t:

 Gi = Pi  Fi-1

 Fi = eK(Gi)

 Ci = Fi  g(Gi-1) [except for i=1: C1 = F1  G0]

where  denotes bit-wise exclusive or, and g is a

function mapping an n-bit block to an n-bit block.

12

EPBC encryption (also IOBC)

P1 P2

C1

Pt

CtC2

eK eKeK

F0

(an IV)

F2

g

G1

G0

(an IV)

F1

G2

g

Gt

Ft

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

7

13

The function g

 Suppose X is an n-bit block, where X = L||R, and L and

R are m-bit blocks.

 Then:

g(X) = (L  ~R) || (L  ~R)

where  denotes bit-wise inclusive or,  denotes bit-wise logical

and, and ~ denotes logical negation (changing every zero to

one and vice versa).

 Note that g is not one-to-one. [This is the only change

between IOBC to EPBC: IOBC uses a one-to-one

function g].

14

An observation

 To launch a forgery attack, it would appear to be

necessary to have knowledge of the ‘internal’ values of

Fi and Gi.

 However, since these values are never transmitted

(and F0 and G0 are assumed to be secret), attacking

this mode would appear to be difficult.

 Moreover, g is deliberately chosen to be not one-to-

one to thwart known-plaintext based forgery attacks

which apply to long messages encrypted using IOBC.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

8

15

Agenda

 Introduction

 Simultaneous confidentiality and integrity

 Attacking EPBC

 Completing the attack

16

Objective of attack

 We assume that the add-redundancy-and-

encrypt model is being used with EPBC.

 We also assume that the method of adding

redundancy is to add a fixed block to the end of

the message.

 The objective is to take a valid ciphertext and

use this to construct another ‘forged’ ciphertext

which will have the correct redundancy when

decrypted.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

9

17

Observation regarding g

 Suppose g(X) = L||R, where L = (1,2,..,m)

and R = (r1,r2,..,rm).

 Then, for every i, if i = 0, then ri = 0.

 To see this, suppose X = L||R, where L =

(1,2,..,m) and R = (r1,r2,..,rm).

 If i = 0 for some i, then, since i = i  ~ri, we

know immediately that i = 0 and ri = 1. Hence

ri = i  ~ri = 0.

 That is, pairs (i, ri) can never equal (0, 1).

18

A more general observation

 Using the same notation, if (i, ri) is in the set

A, then (i, ri) must be a member of the set B,

where the possibilities for the sets A and B are

now given.

 Unless |A| = 1, given a random set A of a

certain size, the expected size of B is always

smaller than |A|.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

10

19

The sets A and B
A (set of input pairs) B (set of output pairs)

{00, 01, 10, 11} {00, 10, 11}

{01, 10, 11}

{00, 10, 11}

{00, 01, 11}

{00, 01, 10}

{00, 10, 11}

{10, 11}

{00, 10}

{00, 10, 11}

{10, 11}

{01, 11}

{01, 10}

{00, 11}

{00, 10}

{00, 01}

{10, 11}

{00, 10}

{00, 11}

{10}

{10, 11}

{00, 10}

{11}

{10}

{01}

{00}

{10}

{11}

{00}

{10}

20

Using the observation I

 Our objective is to use knowledge of known

plaintext/ciphertext pairs (Pi, Ci) to learn pairs

(Fi, Gi).

 Suppose we know s consecutive pairs, i.e. we

know:

(Pj, Cj), (Pj+1, Cj+1), …, (Pj+s-1, Cj+s-1).

where we suppose j > 1.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

11

21

Using the observation II

 We know:

Cj = Fj  g(Gj-1)

 We also know that if g(Gj-1) = L||R, where L =

(1,2,..,m) and R = (r1,r2,..,rm), then (i, ri) can never

equal (0, 1) for any i.

 Hence, knowledge of Cj gives some knowledge about Fj.

 Specifically we know that certain bit pairs cannot occur in

Fj, where each bit pair contains a bit from the left half and

the corresponding bit from the right half.

22

Using the observation III

 We also know:

Gj+1 = Pj+1  Fj

 Hence knowledge of forbidden bit pairs in Fj,

combined with knowledge of Pj+1, gives us

knowledge of forbidden bit pairs in Gj+1.

 This means we know of even more (potentially)

forbidden bit pairs in g(Gj+1).

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

12

23

Using the observation IV

 Since we know:

Cj+2 = Fj+2  g(Gj+1)

and we know Cj+2, this gives us even more forbidden
bit pairs in Fj+2, and so on.

 For sufficiently large w, we hope that we know Fj+2w for
certain.

 This immediately gives complete knowledge of Gj+2w+1,
using knowledge of Pj+2w+1.

 I.e. we have complete knowledge of all Fj+2w and
Gj+2w+1 for all sufficiently large w.

24

A side remark

 In our discussion we have not used all the
available knowledge.

 In fact we only use knowledge of Cj, Cj+2, Cj+4,
… and Pj+1, Pj+3, Pj+5, …

 We also only learn information about Fj, Fj+2,
Fj+4, … and Gj+1, Gj+3, Gj+5, …

 However, we now repeat the process starting
with Fj+1, using all the rest of the information we
have.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

13

25

How big is sufficiently large?

 Consider any pair of bit positions: (i, i+m).

 Returning to our previous argument, we know
that g(Gj-1) cannot have (0, 1) in these two bit
positions.

 Hence, we know that the pair of bit positions in
Fj = Cj  g(Gj-1) can only take three of the
possible four values.

 Precisely which three possibilities will depend
on Cj, which should look random.

26

How big II?

 Hence we know that the two bit positions in Gj+1 can

only take three of the possible four values.

 The possibilities for the two bit positions in g(Gj+1) will

depend on which three pairs are possible (using our

table for the sets A and B).

 That is, there is a 50% chance that we will know that

the two bit positions in g(Gj+1) have only two possible

values, and a 50% chance that there are 3 possible

values.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

14

27

How big III?

 Using standard
probabilistic arguments
for stochastic processes,
the probability that there
will only be a single
possibility for the bit pair
after v iterations of the
above process is equal
to the top right entry in
the vth power of the
following 4 by 4 matrix:





















1000

6/16/500

02/12/10

0010

28

How big IV?

 For v = 10, this is 0.710.

 For v = 20, this is 0.953.

 That is, after 20 iterations, i.e., if we know 40

consecutive plaintext/ciphertext pairs, we will know for

certain around 95% of the bit pairs.

 I.e., if m=64, we will know for certain around 120 of the

128 bits.

 There will only be a small number of possibilities for

the other bit pairs.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

15

29

Agenda

 Introduction

 Simultaneous confidentiality and integrity

 Attacking EPBC

 Completing the attack

30

What else needs to be done?

 Once we know some values of Fi and Gi, we need to

use these values to construct a forgery.

 This is straightforward, as we now show.

 We suppose that the added redundancy prior to

encryption is a fixed n-bit block, i.e. the final n-bit block

of a plaintext message is equal to a fixed block, V.

 The presence (or absence) of this block is used by a

decrypter to check that a message is valid (or not).

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

16

31

Resources for attack

 We suppose that an attacker has the first s blocks of an
encrypted message C1, C2, …, Cs, for which he/she
knows the internal value Gs.

 We suppose the attacker also knows the final two blocks
(Cu-1, Cu) of an encrypted message for which the
attacker knows the internal value Gu-2. [NB: if Pu is the
final plaintext block of this message, then Pu = V.]

 We suppose these two part ciphertexts have been
encrypted using the same key K. [These two part
ciphertexts could be the first s blocks and the final 2
blocks of a longer encrypted message].

32

A forged message

 We now define a ‘forged’ ciphertext message:

C*1, C*2, …, C*s+2

 where

C*i = Ci (1  i  s);

C*s+1 = Cu-1  g(Gu-2)  g(Gs);

C*s+2 = Cu.

 When this forged message is decrypted, the
final block will be Pu = V.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

17

33

Encrypt-then-MAC model

 There seem to be too many problems with the
add-redundancy-and-encrypt model to be able
to recommend it.

 Encrypt-then-MAC seems much safer, and is
provably secure.

 However even this approach needs to be
implemented with care; in particular, a
decrypter must not attempt to decrypt a
message if the MAC check fails.

34

Combined encryption/integrity modes

 There are alternatives to encrypt-then-MAC.

 Of particular interest is the Offset CodeBook (OCB)

mode, due to Rogaway, Bellare, Black and Krovetz

(2001), and a revised OCB v2.0 more recently released.

 These block-cipher-based modes only require each

plaintext block to be processed once, and have a

complexity-theoretic ‘proof of security’ (based on the

assumption that the block cipher is a pseudo-random

permutation family).

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

18

35

Standards

 OCB v2.0, together with other carefully

specified ways of combining encryption and

MACing, are in the process of being

standardised.

 One such standard will be ISO/IEC 19772

(currently at Final Committee Draft stage).

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/

