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Simultaneous encryption and integrity

 Both confidentiality and integrity are often required.

 Indeed, encrypting without integrity protection is now 

known to be dangerous (variety of attacks).

 One simple way to provide both services is the encrypt-

then-MAC model where we encrypt the message and 

then compute a MAC, using two distinct keys.

 This is very effective (if used with care), but each block 

of data is processed twice.
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Add-redundancy-and-encrypt model

 To avoid the extra work of double processing, 

one widely discussed alternative to encrypt-

then-MAC is the add-redundancy-and-encrypt

model.

 Here, predictable redundancy is added to the 

plaintext (e.g. a fixed block at the end) prior to 

encryption, and the receiver checks for the 

presence of the redundancy after decryption.

http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/
http://www.isg.rhul.ac.uk/
http://www.rhul.ac.uk/


3

5

Shortcomings of model

 The encryption method needs to be chosen 

carefully (e.g., a stream cipher is bad news)!

 So does the method of adding redundancy.

– Suppose the ‘fixed block at the end’ method is used.

– Obvious dangers arise if the fixed block arises by 

chance in the middle of the plaintext!

 Despite these dangers, the technique has often 

been advocated.
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EPBC mode

 One major problem with the add-redundancy-then-

encrypt approach is that commonly used encryption 

modes are not appropriate.

 That is, if a mode like CBC is used, then relatively 

simple forgery attacks are possible (as we show).

 We consider a mode specially designed for use with 

add-redundancy-then-encrypt, namely EPBC, and 

show that this mode too is subject to forgery attacks.
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CBC mode = no good!

 Having decided to use add-redundancy-and-
encrypt, the encryption method needs to be 
chosen.

 It is not hard to see that CBC mode is 
completely inappropriate.

 This is because ciphertext errors only 
propagate in a very limited way.

 That is, changing ciphertext block Ci only 
affects Pi and Pi+1.
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CBC decryption – error propagation
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EPBC mode

 EPBC (Efficient error-Propagating Block 
Chaining) was proposed by Zúquete and 
Guedes in 1997.

 It is a mode of operation in which ciphertext 
errors propagate in an unlimited way.

 Designed as an improvement of a mode called 
IOBC (Recacha, 1996).

 Uses an n-bit block cipher where n is even 
(assume n=2m).
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EPBC mode operation

 Uses two n-bit secret IVs:  F0, G0.

 To encrypt plaintext P1, P2, …, Pt:

– perform the following for i = 1, 2, ..., t:

 Gi = Pi  Fi-1

 Fi = eK(Gi)

 Ci = Fi  g(Gi-1)      [except for i=1:  C1 = F1  G0]

where  denotes bit-wise exclusive or, and g is a 

function mapping an n-bit block to an n-bit block.
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EPBC encryption (also IOBC)
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The function g

 Suppose X is an n-bit block, where X = L||R, and L and 

R are m-bit blocks.

 Then:

g(X) = (L  ~R) || (L  ~R)

where  denotes bit-wise inclusive or,  denotes bit-wise logical 

and, and ~ denotes logical negation (changing every zero to 

one and vice versa).

 Note that g is not one-to-one.  [This is the only change 

between IOBC to EPBC:  IOBC uses a one-to-one 

function g].
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An observation

 To launch a forgery attack, it would appear to be 

necessary to have knowledge of the ‘internal’ values of 

Fi and Gi.

 However, since these values are never transmitted 

(and F0 and G0 are assumed to be secret), attacking 

this mode would appear to be difficult.

 Moreover, g is deliberately chosen to be not one-to-

one to thwart known-plaintext based forgery attacks 

which apply to long messages encrypted using IOBC.
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Objective of attack

 We assume that the add-redundancy-and-

encrypt model is being used with EPBC.

 We also assume that the method of adding 

redundancy is to add a fixed block to the end of 

the message.

 The objective is to take a valid ciphertext and 

use this to construct another ‘forged’ ciphertext 

which will have the correct redundancy when 

decrypted.
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Observation regarding g

 Suppose g(X) = L||R, where L = (1,2,..,m) 

and R = (r1,r2,..,rm).

 Then, for every i, if i = 0, then ri = 0.

 To see this, suppose X = L||R, where L = 

(1,2,..,m) and R = (r1,r2,..,rm).

 If i = 0 for some i, then, since i = i  ~ri, we 

know immediately that i = 0 and ri = 1.  Hence 

ri = i  ~ri = 0.

 That is, pairs (i, ri) can never equal (0, 1).
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A more general observation

 Using the same notation, if (i, ri) is in the set 

A, then (i, ri) must be a member of the set B, 

where the possibilities for the sets A and B are 

now given.

 Unless |A| = 1, given a random set A of a 

certain size, the expected size of B is always 

smaller than |A|.
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The sets A and B
A (set of input pairs) B (set of output pairs)

{00, 01, 10, 11} {00, 10, 11}

{01, 10, 11}

{00, 10, 11}

{00, 01, 11}

{00, 01, 10}

{00, 10, 11}

{10, 11}

{00, 10}

{00, 10, 11}

{10, 11}

{01, 11}

{01, 10}

{00, 11}

{00, 10}

{00, 01}

{10, 11}

{00, 10}

{00, 11}

{10}

{10, 11}

{00, 10}

{11}

{10}

{01}

{00}

{10}

{11}

{00}

{10}
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Using the observation  I

 Our objective is to use knowledge of known 

plaintext/ciphertext pairs (Pi, Ci) to learn pairs 

(Fi, Gi).

 Suppose we know s consecutive pairs, i.e. we 

know:

(Pj, Cj), (Pj+1, Cj+1), …, (Pj+s-1, Cj+s-1).

where we suppose j > 1.
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Using the observation  II

 We know:

Cj = Fj  g(Gj-1)

 We also know that if g(Gj-1) = L||R, where L = 

(1,2,..,m) and R = (r1,r2,..,rm), then (i, ri) can never 

equal (0, 1) for any i.

 Hence, knowledge of Cj gives some knowledge about Fj.

 Specifically we know that certain bit pairs cannot occur in 

Fj, where each bit pair contains a bit from the left half and 

the corresponding bit from the right half.
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Using the observation  III

 We also know:

Gj+1 = Pj+1  Fj

 Hence knowledge of forbidden bit pairs in Fj, 

combined with knowledge of Pj+1, gives us 

knowledge of forbidden bit pairs in Gj+1.

 This means we know of even more (potentially) 

forbidden bit pairs in g(Gj+1).
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Using the observation  IV

 Since we know:

Cj+2 = Fj+2  g(Gj+1)

and we know Cj+2, this gives us even more forbidden 
bit pairs in Fj+2, and so on.

 For sufficiently large w, we hope that we know Fj+2w for 
certain.

 This immediately gives complete knowledge of Gj+2w+1, 
using knowledge of Pj+2w+1.

 I.e. we have complete knowledge of all Fj+2w and 
Gj+2w+1 for all sufficiently large w.
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A side remark

 In our discussion we have not used all the 
available knowledge.

 In fact we only use knowledge of Cj, Cj+2, Cj+4, 
… and Pj+1, Pj+3, Pj+5, …

 We also only learn information about Fj, Fj+2, 
Fj+4, … and Gj+1, Gj+3, Gj+5, …

 However, we now repeat the process starting 
with Fj+1, using all the rest of the information we 
have.
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How big is sufficiently large?

 Consider any pair of bit positions: (i, i+m).

 Returning to our previous argument, we know 
that g(Gj-1) cannot have (0, 1) in these two bit 
positions.

 Hence, we know that the pair of bit positions in 
Fj = Cj  g(Gj-1) can only take three of the 
possible four values.

 Precisely which three possibilities will depend 
on Cj, which should look random.
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How big  II?

 Hence we know that the two bit positions in Gj+1 can 

only take three of the possible four values.

 The possibilities for the two bit positions in g(Gj+1) will 

depend on which three pairs are possible (using our 

table for the sets A and B).

 That is, there is a 50% chance that we will know that 

the two bit positions in g(Gj+1) have only two possible 

values, and a 50% chance that there are 3 possible 

values.
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How big  III?

 Using standard 
probabilistic arguments 
for stochastic processes, 
the probability that there 
will only be a single 
possibility for the bit pair 
after v iterations of the 
above process is equal 
to the top right entry in 
the vth power of the 
following 4 by 4 matrix:





















1000

6/16/500

02/12/10

0010
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How big  IV?

 For v = 10, this is 0.710.

 For v = 20, this is 0.953.

 That is, after 20 iterations, i.e., if we know 40 

consecutive plaintext/ciphertext pairs, we will know for 

certain around 95% of the bit pairs.

 I.e., if m=64, we will know for certain around 120 of the 

128 bits.

 There will only be a small number of possibilities for 

the other bit pairs.
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What else needs to be done?

 Once we know some values of Fi and Gi, we need to 

use these values to construct a forgery.

 This is straightforward, as we now show.

 We suppose that the added redundancy prior to 

encryption is a fixed n-bit block, i.e. the final n-bit block 

of a plaintext message is equal to a fixed block, V.

 The presence (or absence) of this block is used by a 

decrypter to check that a message is valid (or not). 
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Resources for attack

 We suppose that an attacker has the first s blocks of an 
encrypted message C1, C2, …, Cs, for which he/she 
knows the internal value Gs.

 We suppose the attacker also knows the final two blocks 
(Cu-1, Cu) of an encrypted message for which the 
attacker knows the internal value Gu-2.  [NB: if Pu is the 
final plaintext block of this message, then Pu = V.] 

 We suppose these two part ciphertexts have been 
encrypted using the same key K.  [These two part 
ciphertexts could be the first s blocks and the final 2 
blocks of a longer encrypted message].
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A forged message

 We now define a ‘forged’ ciphertext message:

C*1, C*2, …, C*s+2

 where

C*i = Ci (1  i  s);

C*s+1 = Cu-1  g(Gu-2)  g(Gs);

C*s+2 = Cu.

 When this forged message is decrypted, the 
final block will be Pu = V.
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Encrypt-then-MAC model

 There seem to be too many problems with the 
add-redundancy-and-encrypt model to be able 
to recommend it.

 Encrypt-then-MAC seems much safer, and is 
provably secure.

 However even this approach needs to be 
implemented with care; in particular, a 
decrypter must not attempt to decrypt a 
message if the MAC check fails.
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Combined encryption/integrity modes

 There are alternatives to encrypt-then-MAC.

 Of particular interest is the Offset CodeBook (OCB) 

mode, due to Rogaway, Bellare, Black and Krovetz 

(2001), and a revised OCB v2.0 more recently released.

 These block-cipher-based modes only require each 

plaintext block to be processed once, and have a 

complexity-theoretic ‘proof of security’ (based on the 

assumption that the block cipher is a pseudo-random 

permutation family).
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Standards

 OCB v2.0, together with other carefully 

specified ways of combining encryption and 

MACing, are in the process of being 

standardised.

 One such standard will be ISO/IEC 19772 

(currently at Final Committee Draft stage).
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