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1 Introduction

The purpose of this paper is to consider a number of general encoding schemes for a two-
dimensional position-sensing scheme. The general idea of the scheme is to write a pattern
onto a planar, rectangular surface in such a way that, given any small part of the pattern
(of pre-determined nature), the exact location of this part-pattern on the surface can be
determined. That is to say, all sub-patterns of a certain type occur at most once in the
overall pattern. This then means that a relatively simple scanning device can determine
its position by examining any small sub-pattern.

The nature of the scanning device can vary considerably; this means that there is a
variety of types of sub-pattern for which surface patterns must be constructed. To make
the problem somewhat more difficult, for most scanning methods currently envisaged it
is unlikely that the precise orientation will be known of the sub-pattern whose location
is to be determined.

One obvious application for such position-sensing schemes is in two-dimensional loca-
tion resolution for Remote-guided vehicles. Use of special sequences for one-dimensional
position location for such vehicles has previously been discussed by Petriu et al., [38, 39).

This paper is concerned with coding schemes, i.e. with methods for generating patterns
and for subsequently decoding them. A brief survey of the main possibilities for pattern
generation and pattern scanning is given, leading to an overview of what general types of
coding scheme may be required.

The second part of the paper looks at one type of coding scheme in more detail, namely
for ‘window-scanning’ schemes. The requirement for this type of coding scheme leads
naturally to the definition of a number of combinatorial problems. Some of these prob-
lems have well-known complete solutions, others have known partial solutions, whilst yet
others have hardly been studied at all. The companion problem to code design is that
of providing efficient decoding algorithms, i.e. providing a means to translate from a de-
tected surface pattern to the position of that pattern on the coded surface. This problem
has historically had little or no attention. Recent work of Paterson and Lloyd provides
solutions in certain cases, but many versions of the problem lack any efficient techniques.

In summary, the purpose of this paper is to present a practical coding problem for which
many of the coding and decoding problems currently lack good solutions. However, it is
the authors’ belief that this lack of solutions is more due to the lack of attention that the
problem has received in the past, rather than to the intrinsic difficulty of the coding and
decoding problems.



2 A review of possible scanning and coding methods

2.1 General description of coding schemes
2.1.1 Pattern construction

There appears to be a variety of ways both to construct patterns, i.e. to encode the surface,
and to read sub-patterns from the surface. We start by examining general properties of
pattern design and scanning.

In all currently envisaged schemes, the surface is partitioned into a large number of cells.
Each of these cells is assigned an integral value, typically in the range 0,1,...,c~1 for
some small positiviinteger ¢ (in which case we say the pattern has ¢ levels). The value of
each cell is then written onto the surface by some means, e.g. by using ¢ distinct colours or
grey scale values. This may either involve ‘colouring’ the entire surface or simply writing
appropriate dots at regular intervals. In the discussion below we refer to different cell
colours with the intention of including the case where grey scale values are used.

2.1.2 Types of pattern scanning

Many types of surface scanning scheme can be devised, although the technique we are
particular concerned with here involves a scanner capable of reading the value assigned
to a (small) number of cells simultaneously. Of particular interest is the case where a
scanner is capable of reading enough cells to determine its position immediately. This
type of scanning is considered in more detail in Section 2.3 below.

2.1.3 Cell edge resolution

A major scanning problem we have not yet mentioned relates to the method used to
detect the edges of cells. We assume throughout this discussion that the movement of the
scanner is irregular, and hence cells will not be traversed at an even rate. Hence in many
application domains, timing information cannot be used to recover cell transitions.

First suppose that cells are coloured by the positioning of an appropriately coloured or
shaded ‘dot’ in the centre of each cell. In this case, given that all dots are a different colour
to the background, edge detection is not a problem. In some circumstances however, it
may be necessary to use cells which are coloured throughout their domain, i.e. the entire
patterned surface is coloured. In this case, adjacent cells will probably always need to be
coloured in different colours in order that a scanner can detect where one cell ends and
another begins.



2.2 Surface partitioning and patterning methods

In our general description of the scheme above, we did not describe how the surface might
be partitioned into cells. The most obvious approach is to divide the surface into a regular
grid. However, although we do not discuss them here, other approaches may be preferable
for practical reasons; for example, it may be desirable to avoid cell boundaries forming
continuous lines across the surface.

The simplest regular division is probably what we refer to as the square grid, where
the rectangular surface is divided into an m by n grid of mn square cells. Each cell is
either coloured in its entirety or an appropriately coloured dot (maybe round or maybe
asymmetric to give orientation information) is placed in the centre of each cell.

However this is not the only possibility. Two other obvious partitions are the triangular
and hezagonal grids, formed by dividing the plane into congruent regular triangles and
hexagons respectively. Both these grids could potentially have advantages in certain
situations.

o In the triangular grid, each cell has only three neighbours (together with three other
cells which it touches in a point). In a rectangular grid each cell has four neighbour
cells and four cells which it touches in a point. Given a coding scheme in which
each cell transition must involve a colour change and in which each neighbour of
a fixed cell must have a different ‘colour’, a triangular grid offers the potential to
design schemes with fewer colours. This could then reduce the cost and complexity
of the scanning device. One potential problem with the triangular grid is the fact
that sets of six cells meet in a point, which could cause scanning problems.

¢ In a hezagonal grid, each cell has six neighbours (and no cells which it touches in
only a point). In certain scanning environments, the hexagonal grid also offers the
possibility of coding schemes with fewer colours.

However, although triangular and hexagonal grids have these possible advantages, encod-
ing schemes are probably more difficult to find in these two cases. Certainly all the existing
theory of sequences and arrays with ‘window’ properties is directed towards rectangular
arrays.

It is interesting and informative to consider the set of possible paths between cells in each
of the three types of grid described above.

e In a hezagonal grid the set of paths between cells forms a triangular grid.

o In a triangular grid the set of paths between cells forms a hexagonal grid (given
that transitions between cells can only take place between neighbouring cells, i.e.
cells sharing an edge).

o In a square grid the set of paths between cells again forms a square grid (as above
provided that transitions between cells can only take place between neighbouring
cells).



2.3 Pattern scanning techniques

We now consider in a little more detail the approach to scanning a pattern which forms the
main focus of this paper. That is, we consider the situation that arises when a scanner is
used which is capable of ‘reading’ more than one cell at a time. As previously mentioned,
we are particularly interested in the case where the scanner is capable of reading enough
cells to determine its position immediately. Clearly, schemes could be devised where a
scanner reads a number of cells, but the scanner position cannot be determined until the
scanner has examined two or more sets of cells; however, we do not consider such schemes
further here.

In the particular case where the scanner can examine a rectangular grid of cells, we refer
to the scheme as window scanning. More precisely, we define window scanning as being
that particular case of the general position detection problem when the following hold.

e The scanner examines a rectangular sub-pattern (or window) of fixed size (uby v
say).

o The window sub-pattern always uniquely defines the position of the scanner in the
pattern.

Now consider how the information provided by a multiple-cell scanner might be used to
provide the desired positional information. The first problem for the scanner information
processing hardware/software will be deciding what angle the scanned pattern is at (that
is, without reference to the actual pattern of colours in the scanned cells).

In the case of a rectangular grid, where we assume that the processing circuitry must
resolve the scanned information into a rectangular sub-pattern, three possibilities are as
follows.

o The scanner is capable only of the minimum resolution, i.e. there will be four possible
orientations for the scanned sub-grid. This would typically be the case where the
colours are marked using circular, square or other dots with 90 degree rotational
symmetry.

e The scanner is capable of determining the orientation of the scanned sub-grid to
within two possibilities (0 or 180 degree rotation). This would typically be the case
where the colours are marked using elliptical, rectangular or other dots with 180
degree rotational symmetry.

e The scanner is capable of determining the orientation of the scanned sub-grid com-
pletely. This would typically be the case where the colours are marked using asym-
metric dots.

In the case of other grids (e.g. triangular or hexagonal grids) similar orientation problems
will arise.

Following this first stage of processing, the algorithm will then need to examine the
colouring of the cells in the scanned sub-grid. This information must then be sufficient to
determine uniquely the position of the scanned sub-grid within the entire coded surface.
Hence the degree to which the orientation of the scanned pattern can be resolved without
reference to the cell colouring will determine what kind of encoding pattern is required.



2.4 Primary system objectives

As we have seen, many possibilities exist for both the general approach to pattern scan-
ning, and to designing patterns capable of yielding the desired location information. How-
ever, there are a number of general criteria applying to all systems which can be used to
measure their efficiency. Some of the key criteria are as follows.

o The number of colours used should be minimised, primarily in order to simplify the
scanner design.

o The size of the sub-pattern that needs to be examined should be minimised.

e Minimal assumptions should be made regarding the type of path followed by the
scanner or the orientation of the window viewed by the scanner.

The first two of these criteria should be read as being relative to the overall pattern size.
Simple counting arguments indicate that the larger the pattern size, the larger the number
of colours and/or the sub-pattern size will need to be.

3 Coding for window scanning schemes

In the remainder of this paper we consider the coding problem for one particular type of
scanning scheme, namely window scanning for square grids. As has already been noted,
in such a scheme the patterned surface is divided into an m by n rectangular grid of mn
square cells. Each cell is marked in such a way that the scanner can detect which of ¢
levels is assigned to that cell (these levels being numbered 0,1,...,c — 1). We refer to a
scheme as binary if ¢ = 2, ternary if ¢ = 3, and, in general, c-ary. We also refer to the m
by n rectangular pattern of values from {0,1,...,¢ — 1} used to determine the marking
of the grid as a c-ary array.

As noted above, one of the main problems to be overcome in designing patterns is the
problem of determining both position and orientation from the scanned sub-pattern. We
consider three versions of the orientation problem, schemes for the solution of which we
call: 1-orientable, 2-orientable and 4-orientable arrays.

e I-orientable arrays are designed to deal with the simplest case, i.e. where only one
possible orientation can occur. In other words, these arrays are suitable only where
the orientation of the scanned sub-pattern can be determined completely by means
other than that of examining the scanned sub-pattern.

e 2-orientable arrays are for use where there are 2 possible orientations for the window,
namely ‘North’ or ‘South’ (i.e. up or down).

e 4-orientable arrays need to cope with the case where there are four possible orien-
tations for a scanned window, namely ‘North, ‘South’, ‘East’ or ‘West’.
3.1 Preliminary remarks

We next make some general observations applying to all the schemes we consider in the
remainder of this paper. We use m and n to denote the dimensions of the array and u



and v to denote the dimensions of the scanned window. For all schemes considered here,
we assume that
us<m

and
v<mn,

i.e. that the window will fit within the array being scanned. In the 4-orientable case we
must cope with the possibility that the scanned window will be ‘sideways’ with respect
to the array. Hence in this case we will also assume that

u<sn

and
v<m,

i.e. we assume that
max(z,v) < min(m,n).

Each of the array design problems we consider here come in two flavours: periodic and
aperiodic. The aperiodic case is the one we have so far implicitly considered, i.e. where
the array is written onto a planar surface and the scanned sub-array is always completely
within the borders of the array.

However, for theoretical and occasionally practical reasons, it is also worth considering the
periodic case. By theoretical reasons we mean that not only does the theory of such arrays
appear to be more tractable than in the aperiodic case, but also existing construction
methods are exclusively designed for the periodic case. In the periodic case we consider
the array to be wrapped round on itself — in the one-dimensional case this corresponds
to writing the sequence on the outside of a cylinder, and in the two-dimensional case to
writing the array onto a torus. The window can then be moved anywhere on the array
which no longer has any ‘edges’. It is also occasionally worth considering the case where
one dimension is regarded periodically and the other aperiodically, as would happen if a
two-dimensional array were written onto the outside of a cylinder.

Because of the practical importance of the aperiodic case, and because of the theoretical
importance of the periodic case, we consider both cases. We show below that any periodic
array can be used to construct a slightly larger aperiodic array, and hence the study of
the periodic case has practical as well as theoretical interest.

3.2 Formal definitions

Before proceeding we give formal definitions for the objects considered here. All these
definitions will apply to c-ary m by n arrays, i.e. arrays

A=(a,-,-,05i$m-—1,05j$n—l)

where each entry a;; in the array satisfies 0 < a;; < ¢ — 1. Note that it would be quite
simple to generalise these definitions to the multi-dimensional case; however, since only
the 1- and 2- dimensional cases are of immediate practical application, we consider only
those cases here.

If Ais an m by n c-ary array, we define its u by v sub-arrays to be the c-ary arrays

Aw=(aP,0<i<u-1,0<j<v-1),0<s<m-1,0<t<n—1



defined by
a.‘-;") = Gits,jtt

where i + s is computed modulo m and j + t is computed modulo n.

Observe that in the aperiodic case we are only interested in those sub-arrays A,; for
which 0 < s <m —uand 0 <t < n—v. We call this subset of sub-arrays the aperiodic
sub-arrays.

3.2.1 1l-orientable sequences and arrays

We can now define a 1-orientable aperiodic (u,v)-window array A = (a;;) to be a c-ary
m by n array (m > u, n > v) with the property that all its u by v aperiodic sub-arrays
Ay, 0<s<m—1u,0<t<n-—vare distinct. Le. Ay = Ay if and only if s = s’ and
t=t(given0< s, <m-uand0<t,t' <n-v)

A I-orientable aperiodic v-window sequence is then simply a 1 by n 1-orientable aperiodic
(1,v)-window array.

Similarly we define a I-orientable periodic (u,v)-window array A = (a;;) to be a c-ary m
by n array (m > u, n > v) with the property that all its » by v sub-arrays A,,0 < s <
u—1,0 <t <v-1 are distinct. Le. A,y = Ay if and only if s = 8’ and t = t/ (given
0<s,<u-land0<tt'<v-1)

A I-orientable periodic v-window sequence is then a 1 by n 1l-orientable periodic (1,v)-
window array.

Observe that what Dénes and Keedwell, [8], call an m by n array having the u by v
window property is precisely a 1-orientable periodic (u,v)-window array. Similarly what
Dénes and Keedwell, [8], call a sequence having the window property for windows of length
v is precisely a 1-orientable periodic v-window sequence.

3.2.2 2-orientable sequences and arrays

To give the definitions in the 2-orientable case, we first need an additional definition.
Given an m by n array A = (4;;,0<i < m—-1,0 < j < n— 1), we denote the rotation
of A by 90 degrees by Rog(A) and define it to be the n by m array Rgo(A) = (ag’O),O <
t<n-1,0<j7<m-—1) where

(90)
i
We then write Rigo(A) for Rog(Roo(A)) and Rg7o(A) for Roo(Rgo(Roo(A4))). Finally
observe that R360(A) = Rgo(Rgo(Rgo(Rgo(A)))) =A= Ro(A).

We can now define a 2-orientable aperiodic (u,v)-window array A = (a;;) to be a c-ary
m by n array (m > u, n > v) with the property that the collection of arrays consisting of
the u by v aperiodic sub-arrays of A and the u by v aperiodic sub-arrays of R,g0(A) are
all distinct.

a = @m-1—-j,iy 0<i<n-1,0<j<m-1

A 2-orientable aperiodic v-window sequence is then simply a 1 by n 2-orientable aperiodic
(1, v)-window array.

Similarly we define a 2-orientable periodic (u,v)-window array A = (a;;) to be a c-ary m
by n array (m > u, n > v) with the property that the collection of arrays consisting of
the u by v sub-arrays of A and the u by v sub-arrays of R;go(A) are all distinct.



A 2-orientable periodic v-window sequence is then a 1 by n 2-orientable periodic (1,v)-
window array.

Observe that what Dai, Martin, Robshaw and Wild, [6], call an orientable sequence of
order n is precisely a (binary) 2-orientable periodic n-window sequence.

3.2.3 4-orientable arrays

In much the same way as before we now define a 4-orientable aperiodic (u,v)-window
array A = (a;;) to be a c-ary m by n array (min(m,n) > max(u,v)) with the property
that the collection of arrays consisting of the u by v aperiodic sub-arrays of A, Rgo(A),
Riso( A) and Ra7o(A) are all distinct.

Similarly we define a §-orientable periodic (u,v)-window array A = (a;;) to be a c-ary
m by n array (min(m,n) > max(u,v)) with the property that the collection of arrays
consisting of the u by v sub-arrays of A, Rgo(A), Riso(A) and Ra70(A) are all distinct.

Observe that 4-orientable sequences cannot exist, and so we do not consider them further.

3.2.4 Constructing aperiodic window arrays from periodic window arrays

We now describe how any periodic s-orientable (u, v)-window sequence/array can be trans-
formed into an aperiodic s-orientable (u,v)-window sequence/array of slightly larger di-
mensions.

We first consider the sequence case. Suppose A = (a;) (0 < i < n— 1) is a sequence of
length n. Then, given v satisfying 1 < v < n,let E,(4) = (b;) (0 < j < n+v—2)be the
sequence of length n + v — 1 defined by

bj = Gjmodn-
Note that E;(A) = A. Informally E,(A) consists of A concatenated with the first v — 1
terms of itself.

Now suppose A = (a;;) (0<i<m—-1,0<j<n-1)is an m by n array. Then, given
u and v satisfying 1 < u < mand 1 < v < n,let Ey,(A)=(bi;) (0<i<m+u-—-2and
0<j<n+wv-—2)bethe (m+u—1)by(n+v—1)array defined by

bs'j = Gimodm,jmodn-

As previously observe that E; 1(A) = A.

We can now state the following.

Lemma 3.1 If A is a periodic s-orientable v-window sequence of length n (s € {1,2},
n > v), then E,(A) is an aperiodic s-orientable v-window sequence of length n + v — 1.

Similarly, if A is an m by n periodic s-orientable (u,v)-window array (s € {1,2}, m > u,
n > v), then E,,(A) is an (m+u —1) by (n+v — 1) aperiodic s-orientable (u,v)-window
array.

Proof  All four cases of the result (i.e. s = 1 and s = 2 for sequences and s = 1
and s = 2 for arrays) are proved in a similar way. To avoid unnecessary duplication we
consider one case only, namely s = 1 for arrays. In this case it should be clear that the set



of u by v sub-arrays of A is identical to the set of 4 by v aperiodic sub-arrays of E,,(A).
The result follows immediately from the definitions. O

The above elementary construction was previously described for the case s = 1 by
Kanetkar and Wagh, {27]. Finally observe that a similar (although somewhat weaker)
result holds for 4-orientable arrays, namely:

Lemma 3.2 If A is an m by n periodic 4-orientable (u,v)-window array (min(m,n) >
max(u,v)), then E,,(A) is an (m + w — 1) by (n + w — 1) aperiodic 4-orientable (u,v)-
window array where w = min(u,v).

3.2.5 Comments on definitions

Note that in the above definitions we have implicitly ruled out ‘self-symmetric’ u by v
sub-patterns from 2- and 4- orientable arrays. More precisely, it is immediate from the
definitions that the following hold.

¢ A 2-orientable periodic (aperiodic) (u,v)-window array can never contain a u by v
(aperiodic) sub-array A, with the property that Rjgo(Ase) = Ay

¢ A 4-orientable periodic (aperiodic) (u,u)-window array can never contain a u by u
(aperiodic) sub-array A, with the property that Rog(Ay) = Ayt

However, in practice it would appear that the existence of such symmetric patterns would
not cause any problems for a position resolution system (as long as the position only is
needed and not the precise angle of orientation of the scanning device). We can therefore
conclude that the above definitions are over-restrictive from the view-point of the practical
application.

Nevertheless, the above definitions appear to be the most natural from a mathematical
respect, and seem likeliest (at least intuitively) to yield practical results in terms of
methods of construction. We therefore pursue the above definitions throughout this paper,
albeit observing that alternative definitions allowing arrays containing symmetric sub-
arrays appear to be a good topic for future work.

4 1l-orientable arrays

4.1 A fundamental inequality

We start by giving well-known fundamental bounds for the periodic and aperiodic cases
which can be derived by simple counting arguments.

Lemma 4.1 The following bound must be satisfied by any I-orientable aperiodic (u,v)-
window array, A:

(m—u+1)(n-v+1)<c™.
If an array meets the bound then the set of aperiodic u by v sub-arrays of A will contain
every possible c-ary u by v array ezactly once.

Proof By definition A has (m — u + 1)(n — v + 1) aperiodic sub-arrays which must
all be distinct. However, there are precisely ¢*¥ possible u by v c-ary arrays. The bound
and the assertion regarding arrays meeting the bound follow. O



Lemma 4.2 The following bound must be satisfied by any I1-orientable periodic (u,v)-
window array, A:
mn < c*.

If an array meets the bound then the set of u by v sub-arrays of A will contain every
possible c-ary u by v array ezactly once.

Proof By definition A has mn periodic sub-arrays which must all be distinct. However,
there are precisely c*¥ possible u by v c-ary arrays. The bound and the assertion regarding
arrays meeting the bound follow. O

In the spirit of previous authors, e.g. Gordon, [23], we call a 1-orientable aperiodic
window array perfect if it meets the bound of Lemma 4.1, and we similarly call a 1-
orientable periodic window array perfect if it meets the bound of Lemma 4.2. Reed and
Stewart, [41], Gordon, [23], and Etzion, [12], (amongst many others), call perfect binary 1-
orientable periodic window arrays perfect maps, whereas other authors, (e.g. Ivinyi, [25],
who considers the c-ary case, and Fan, Fan, Ma and Siu, [17]), call such arrays de Bruijn
arrays. This latter terminology derives from the well-established term de Bruijn sequence
which has long been used to describe perfect 1-orientable periodic window sequences (see,
for example, [4, 5, 11, 14, 15, 16, 18, 20] in the binary case, and [21] in the c-ary case).

In addition, if a 1-orientable aperiodic window array satisfies (m—u+1)(n—v+1) = ¢*¥~1,
i.e. one less than the maximum of Lemma 4.1, and the ‘missing’ u by v array is the all-zero
array, then we call it semi-perfect. Similarly, a semi-perfect 1-orientable periodic window
array is one which satisfies mn = ¢*Y — 1, i.e. one less than the maximum of Lemma 4.2,
and for which the ‘missing’ u by v array is the all-zero array. Semi-perfect 1-orientable
periodic window arrays are often called pseudo-random arrays in the literature, see, for
example, [13, 12]. However, this term is somewhat confusing in that it is also often
used in a more specialised way to mean an array derived from an m-sequence (following
MacWilliams and Sloane, [31]). In fact, pseudo-random arrays in this latter sense are
always examples of pseudo-random arrays in the former sense.

Before proceeding we state the following result relating the existence of perfect and semi-
perfect periodic and aperiodic sequences and arrays.

Theorem 4.3 (i) If A is a perfect periodic 1-orientable v-window sequence, then E,(A)
is a perfect aperiodic I-orientable v-window sequence. Similarly, if A is a semi-
perfect periodic 1-orientable v-window sequence, then E,(A) is @ semi-perfect ape-
riodic 1-orientable v-window sequence.

(i) If A is a perfect (or semi-perfect) periodic I1-orientable (u,v)-window array, then
E..(A) is a perfect (or semi-perfect) aperiodic 1-orientable (u,v)-window array.

(iii)) There ezists a 1-1 correspondence between the set of perfect periodic 1-orientable
v-window sequences and the set of semi-perfect periodic 1-orientable v-window se-
quences.

Proof
(i) If A is a perfect periodic c-ary 1-orientable v-window sequence then, by definition, it

has length c¢?. By definition E,(A) has length ¢” +v—1, is an aperiodic 1-orientable
v-window sequence by Lemma 3.1, and hence is perfect by definition. Similarly, if A

10



is a semi-perfect periodic c-ary l-orientable v-window sequence then, by definition,
it has length ¢?—1. By definition E,(A) haslength cV+v—2 and does not contain the
all-zero v-tuple as an aperiodic sub-sequence, is an aperiodic 1-orientable v-window
sequence by Lemma 3.1, and hence is semi-perfect by definition.

(i) If A is an m by n perfect periodic c-ary 1-orientable (u,v)-window array then, by
definition, mn = c**. By definition E,v(A) is an m + 4 — 1 by n + v — 1 array, is
an aperiodic 1-orientable (u,v)-window array by Lemma 3.1, and hence is perfect
by definition. The semi-perfect case follows by an exactly analogous argument.

(iii) A perfect periodic l-orientable v-window sequence (or, equivalently, a de Bruijn
sequence) has length 2" and (if considered as a ‘circular’ sequence) will contain
every binary v-tuple exactly once, and hence will contain precisely one sequence of
v consecutive zeros (which will necessarily be preceded and succeeded by non-zero
elements). It will also contain no sequences of v — 1 zeros, apart from the two
embedded in the sequence of v zeros.

Similarly, a semiperfect 1-orientable periodic v-window sequence will contain pre-

cisely one sequence of v — 1 zeros (which will necessarily be preceded and succeeded

by non-zero elements) and no sequences of v zeros. To obtain a semiperfect sequence

from a perfect one it is only necessary to omit one of the zeros from the (unique)

sequence of zeros of length v, and to obtain a perfect sequence from a semiperfect -
one the reverse process can be followed, i.e. add a zero into the (unique) sequence

of zeros of length v — 1. It should be clear that this defines a 1-1 correspondence

between the two types of sequence. O

4.2 Window sequences

We first consider the case m = 1 (and hence u = 1), i.e. we look at window sequences.

4.2.1 The binary case

We start by examining the binary case, i.e. ¢ = 2. Construction methods for perfect binary
1-orientable periodic v-window sequences (which must satisfy n = 2¥) are well-known; as
we have already observed, such sequences are normally known as de Bruijn sequences
(following the work of de Bruijn and Good in the 1940s, {7, 22]). Such sequences exist
for every value of v > 1, and construction techniques for such sequences abound (see, for
example, [4, 5, 7, 11, 14, 15, 16, 18, 19, 20, 28]). Indeed, not only do such sequences e)ust
for every v, but the precise number of distinct such sequences is known — it is 22"~

(see, for example, (7, 14, 19]).

By Theorem 4.3(iii), semi-perfect sequences can be constructed using exactly the same
techniques. There is a particularly important family of semi-perfect binary 1-orientable
periodic window sequences, namely the well known m-sequences. These sequences can
be generated using linear feedback shift registers equipped with feedback tap positions
corresponding to the non-zero coefficients of primitive polynomials over GF(2). A con-
cise review of some of the most significant properties of m-sequences can be found in
Macwilliams and Sloane, [31]. Using the 1-1 correspondence of Theorem 4.3(iii), one can
very easily derive a set of de Bruijn sequences from these m-sequences.

We next consider the aperiodic case. By Theorem 4.3(i), perfect and semiperfect binary
aperiodic 1-orientable v-window sequences exist for every v.

11



It is interesting to observe that the possibility of using 1-orientable window sequences for
position detection is well-known. It was discussed in Bondy and Murty’s 15-year old book,
[3], as well as in more recent papers by Arazi, (1] and Petriu et al., [34, 35, 36, 37, 38, 39].

4.2.2 The c-ary case

Very similar results apply in the c-ary case. Perfect periodic c-ary 1l-orientable window
sequences (which must satisfy n = ¢¥) can be constructed for every ¢ and v; such sequences
are known as c-ary de Bruijn sequences (or simply as de Bruijn sequences). Constructions
which work for any ¢ and v were given in 1949 by Good, [22] and Rees, [42]. Since then
many other construction techniques have been devised; see, for example, [9, 10, 21, 40, 43].

Theorem 4.3(iii) means that semiperfect c-ary 1-orientable periodic window sequences
(which must satisfy n = c¢¥ — 1) can be constructed for every ¢ and v.

When we consider the aperiodic case, as before we need only consider Theorem 4.3(i).
This result implies that perfect and semiperfect c-ary aperiodic 1-orientable v-window
sequences exist for every ¢ and v. In summary therefore we have the following result:

Theorem 4.4 Ifc > 2 and v > 1 then the following sequences can be constructed:

(1) A perfect c-ary 1-orientable periodic v-window sequence (having c’ elements),

(i1) A semiperfect c-ary I-orientable periodic v-window sequence (having ¢¥ — 1 ele-
ments),

(iti) A perfect c-ary 1-orientable aperiodic v-window sequence (having c*+v—1 elements),

(iv) A semiperfect c-ary I-orientable aperiodic v-window sequence (having ¢” + v — 2
elements).

4.2.3 The decoding problem

Given that an abundance of apparently ideal sequences exist for this particular case
of the coding problem, one naturally asks whether simple solutions also exist for the
corresponding decoding problem. That is, given a particular v-window sequence and
given a v-tuple, at what position does that v-tuple lie in the sequence?

This problem has previously been considered by a number of authors, including Arazi,
[1] and Petriu, [35, 36, 39]. One simple solution (as mentioned for example in [1]) is to
store a complete look-up table giving the conversion from each v-tuple to its position in
the sequence. This will result in a look-up table having c¥ entries, which would become
prohibitively expensive for large v.

In the (binary) m-sequence case, a simple alternative (see, for example, [35]) would be to
load the v-tuple into a shift register capable of generating the m-sequence, and clock it
until a fixed ‘reference’ v-tuple is reached. The number of clocks required would indicate
the position of the v-tuple in the sequence. This approach would be too computationally
expensive for large v.

The two simple solutions outlined above are memory and processor intensive respectively.
A compromise between these two approaches has been suggested by Petriu at al., [36, 39),
appropriate again to the (binary) m-sequence case. This compromise involves storing a
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limited look-up table containing ‘milestone’ values. A v-tuple to be decoded is loaded
into a shift register and clocked until it is equal to one of the milestone values for which a
position value is stored. This simple solution gives a useful compromise between storage
and processing time; however, the product of the storage and processing requirements
remains proportional to 2¥, limiting its applicability to relatively small values of v.

For the binary case, Arazi, [1], suggests a radically different approach which has the
advantage of being computationally manageable for very large v. However, this solution
only applies where it is possible to look at v non-consecutive bits of the sequence, as might
be the case if the sequence were to be used to determine the angle of a rotating shaft by
examining v out of 2¥ bits engraved around its circumference. Arazi constructs sequences
for which the decoding problem is simple given that v bits with fixed relative positions
can be scanned.

None of the above approaches provide an efficient decoding algorithm for sequences having
large v and where a window of v bits is scanned. Recent work of Paterson, [33], appears
to go a long way to solving this problem (in the binary m-sequence case). The Pater-
son solution translates the decoding problem into the well known and computationally
tractable problem of extracting discrete logarithms in the field GF(2¥).

Very little is known about the decoding problem in the c-ary case (¢ > 2). Indeed, in
general the decoding problem only appears to have been considered for certain special
binary l-orientable periodic window sequences and arrays, although the methods that
have been devised also apply to the aperiodic sequences and arrays that can be derived
from them.

4.3 Window arrays (m > 1)
4.3.1 The binary case

We next consider binary 1-orientable window arrays. As before we divide this discussion
into a number of cases.

Perfect periodic arrays

As described above, perfect binary 1-orientable periodic (u,v)-window arrays are usually
known as Perfect Maps, following the 1962 paper by Reed and Stewart, [41]. In the
context of such arrays, the question that naturally arises is as follows. Given a pair u,v
(u,v > 1) for which possible pairs of positive integers (m,n) satisfying mn = 2*¥ does
there exist an m by n perfect binary periodic 1-orientable (u,v)-window array (or, using
the notation of Fan et al., [17], for which m,n does there exist an (m, n;u,v)-array)?

This question has only been partially answered. As Fan et al., [17] point out, mn = 2%¥ is
definitely not a sufficient condition for the existence of an m by n perfect binary periodic
1-orientable (u,v)-window array. They cite the case m = u = 2, n = 22* 1 and v = s,
and point out that no such array can exist since the set of 2 by s periodic sub-arrays
must contain the all zero sub-array zero times or at least twice. This argument can be
generalised to give Lemma 4.5 below.

Before proceeding, observe that the idea of using perfect maps for 2-dimensional position
detection dates back to the 1962 paper of Reed and Stewart, [41]. What does seem to
be novel is the idea of using 2- and 4-orientable arrays for position detection where the
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orientation of the scanned sub-array is unknown.

Lemma 4.5 If an m by n binary periodic 1-orientable (u,v)-window array ezists which
has amongst its u by v periodic sub-arrays the all zero array or the all one array, then

m>u or u=1

and
n>v or v=1.

The construction results due to Ma, [30], Fan et al, [17] and Etzion, [12], give the following
summary of existence results for perfect periodic binary 1-orientable (u, v)-window arrays.

Theorem 4.6 (i) Suppose there erists an m by n perfect periodic binary 1-orientable
(u,v)-window array A. Then

(a) if every column of A has the property that the sum of its elements is even and
m > u + 1 then there exists an m by 2'n perfect periodic binary 1-orientable
(v + 1, v)-window array, and

(b) if every column of A has the property that the sum of its elements is odd then
there ezists a 2m by 2"~ 'n perfect periodic binary 1-orientable (v+1,v)-window
array,

(Fan et al., [17, 30]).

(#) For any positive even integer v, there ezists a 2v/2 by 2v°/2 perfect periodic binary
1-orientable (v,v)-window array (Fan et al., [17]).

(1) For any pair of positive integers (u,v) there ezists a 2% by 24~ perfect periodic
binary 1-orientable (u,v)-window array whenever u < 2F < 2% ezcept when k = u
and v = 2 (Etzion, [12]).

This is by no means a complete list of existence results for perfect maps; for further infor-
mation regarding the construction of these arrays the reader is referred to the literature
cited in the above theorem and to [13]. It is interesting to observe that Theorem 4.6(i)
implies that considerable progress on the existence question for Perfect Maps may well
be possible if construction methods can be devised giving perfect maps with fixed column
sums modulo 2.

Semi-perfect periodic arrays

As previously described, semi-perfect (periodic) binary 1-orientable window arrays are
often known as Pseudo-random arrays. The existence question for such arrays is as
follows. Given a pair u,v (u,v > 1) for which possible pairs of positive integers (m,n)
satisfying mn = 2%¥ — 1 does there exist an m by n semi-perfect binary 1-orientable
periodic (u,v)-window array?

This question also remains unanswered in general. The following result summarises some
of the main partial answers to the existence question. Note that this result is not an
exhaustive list of existence results — further results can be found in two papers by Etzion,
(12, 13].
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Theorem 4.7 (i) Suppose u, v, m and n are positive integers where m|(2* — 1) and

2% —1
—

If these integers satisfy m|2°—1 only if s > u then there ezists an m by n semi-perfect
periodic binary 1-orientable (u,v) window array (Etzion, [12], Theorem 5).

(#) For every pair of positive integers (u,v) there ezists an m by n semi-perfect periodic
binary 1-orientable (u,v) window array for some co-prime pair (m,n) satisfying
mn = 2% — 1 (Gordon, [23]).

(iii) Suppose u’, v, m, n and k are positive integers satisfying:

(a) mi(2* - 1),

() 1<k < ¢(m)/o,

(c) n= (2" —1)/m, and
(d) mj2* — 1 only if s > o'

Then there exists an m by n semi-perfect periodic binary 1-orientable (ku',v) window
array (Etzion, [12], Theorem 7).

() For any pair of positive integers (u,v) an m by n semi-perfect binary 1-orientable
periodic (u,v)-window array can only ezist if m > u and n > v (from Lemma 4.5
above).

Nomura et al., [32], first constructed arrays having the parameters of Theorem 4.7(i)
for the case gcd(m,n) = 1. Note also that a simple construction of arrays having the
parameters of Theorem 4.7(i) for the case m = 2* — 1 and gcd(m,n) = 1 can be found in
Macwilliams and Sloane, [31]. We conclude this discussion of periodic binary 1-orientable
window arrays by mentioning that a number of other ‘sub-perfect’ periodic arrays have
been constructed by Dénes and Keedwell, [8] and Etzion, [12, 13].

Perfect aperiodic arrays

We devote the remainder of this section to a consideration of aperiodic arrays. We start
by considering the perfect case. Observe that, by Theorem 4.3(ii), the existence of an m
by n perfect periodic 1-orientable (u, v)-window array implies the existence of an m+u—1
by n+v—1 perfect aperiodic 1-orientable (u, v)-window array. However, the reverse is not
true, i.e. there exist values of m,n,u,v (where 2*¥ — 1 = mn) for which there does exist
an m+u—1 by n+v—1 perfect aperiodic 1-orientable (u, v)-window array but for which
there does not exist an m by n perfect periodic 1-orientable (u, v)-window array. This can
be seen from the example of a 3 by 9 perfect aperiodic 1-orientable (2,2)-window array
given in Figure 1, since by Theorem 4.6(iv), there cannot exist a 2 by 8 perfect periodic
1-orientable (2,2) window array. Other examples of aperiodic window arrays for which
the corresponding periodic window arrays cannot exist are given in Figures 2 and 3.

Apart from these examples, further perfect aperiodic arrays not derived from periodic
arrays can be obtained from the following two elementary construction methods.

Construction 4.8 Suppose m,n,v are positive integers satisfying n > v and m(n — v +
1) = 2¥. We construct an m by n binary array. Suppose A is a (binary) de Bruijn sequence
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111100001
110100101
001111000

Figure 1: 3 by 9 perfect aperiodic 1-orientable (2,2)-window array
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Figure 2: 3 by 34 perfect aperiodic 1-orientable (2,3)-window array

of length 2V (i.e. a perfect binary periodic 1-orientable v-window sequence). Partition the
sequence into m segments So, 51,...,5m—1 each of length n — v+ 1 (this is possible since
we have assumed that m(n — v+ 1) = 2¥). To each segment adjoin the next v — 1 bits
of the sequence A (where necessary working cyclically) to obtain m sub-sequences of A:
To,Th,...,Tm-1 each of length n. Arrange these sub-sequences in any order to form the
m rows of an m by n array.

Construction 4.9 Suppose n,u,v are positive integers satisfyingn > vandn—v+1 =
2. We construct a u by n binary array. Let ¢ = 2%, and suppose A is a c-ary de Bruijn
sequence of length c¢” = 2"¥ (i.e. a perfect c-ary periodic 1-orientable v-window sequence).
Then, by Theorem 4.3(i), E,(A) is a perfect aperiodic 1-orientable v-window sequence,
which we write as (a;), (0 < i < 2% + v —2). Since c = 2%, each element of (a;) can
be written as a u-bit binary tuple, b; say (using the binary representation of a; with, if
necessary, leading zeros added). Finally, define a u by 2*Y + v — 1 binary array which has
b; as columni (0 <1< 2% +v-2).

Theorem 4.10 (i) Suppose that m,n,v are positive integers satisfying n > v and
m(n — v+ 1) = 2Y, and that B is an m by n array constructed using Construc-
tion 4.8. Then B is an m by n perfect aperiodic 1-orientable (1,v)-window array.

(i) Suppose that n,u,v are positive integers satisfyingn > vandn—v+1 = 2% and
that C is a u by n array constructed using Construction 4.9. Then C is a u by n
perfect aperiodic 1-orientable (u,v)-window array.

Proof
001100100011011101100100011011100
001100010110000100110111100101110
001101110011001001101110011001000
11001011100110111100001001100010 1

Figure 3: 4 by 33 perfect aperiodic 1-orientable (3,2)-window array
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(i) Suppose A is the binary de Bruijn sequence of length 2 used to conmstruct B.
Suppose ¢ is any binary v-tuple. Then, by the de Bruijn property, ¢ occurs at a
unique position in A. The element of A corresponding to the first bit of ¢ will
(trivially) occur in a unique (n — v + 1)-bit segment, S; say. It should be clear that
c will then occur in Tj, and hence in B. Thus every binary v-tuple occurs at least
once in B, and hence exactly once in B (since B contains precisely m(n—v+1) = 2
aperiodic sub-arrays of size 1 by v).

(ii) Suppose A is the c-ary de Bruijn sequence of length 2“" used to construct C (where
¢ = 2%). It should be clear that there is a 1-1 correspondence between the set of
all u by v binary arrays and the set of all c-ary v-tuples. Hence, since every c-ary
v-tuple occurs precisely once in A, every 4 by v binary array will occur uniquely as
an aperiodic sub-array of C. O

We conclude this discussion of perfect aperiodic binary window arrays by giving a table
of all possible parameter sets for perfect periodic and aperiodic binary 1-orientable (u,v)-
window arrays for uv < 6, u < v and, where u = v, m < n. For each parameter set
we indicate the status of the existence question for both types of array. Note that those
parameter sets corresponding to de Bruijn sequences (i.e. m = u = 1) have been omitted
from the table. Note also that an 8 by 8 perfect periodic 1-orientable (2, 3)-window array
can be constructed using Theorem 4.6(i)(b) since a 4 by 4 perfect periodic 1-orientable
(2,2)-window array exists with all column sums odd (see, for example, Fan et al., [17],
Example 5.6).
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uv |u v mn m|n|mbyn m+u—1lbynt+v-1
(=2%) |‘ Periodic | Aperiodic

2 12 4 2 | 2 || Non-existent (4.5) (2x3) Exists (4.10(i))
4 | 1 || Non-existent (n < v) [| (4x2) Exists (4.10(i))

3 1|3 8 2 | 4 || Exists (4.6(iii)) (2x6) Exists (4.10(i))
4 | 2 || Non-existent (n < v) || (4x4) Exists (4.10(i))
8 | 1 || Non-existent (n < v) || (8x3) Exists (4.10(1))

4 [1[4 16 || 2| 8 || Exists (4.6(m)) (3x11) Exists (4.10(1))
4 | 4 || Non-existent (4.5) (4x7) Exists (4.10(i))
8 | 2 || Non-existent (n < v) || (8x5) Exists (4.10(i))
16 | 1 || Non-existent (n < v) |[ (16x4) Exists (4.10(i))

212 16 1 | 16 || Non-existent (m < u) || (2x17) Exists (4.10(ii))

2 | 8 || Non-existent (4.5) (3x9) Exists (Figure 1)
4 | 4 || Exists (4.6(ii)) (5x5) Exists (4.3(ii))

5 |15 32 || 2 |16 | Exists (4.6(i)) (2x20) Exists (4.10(1))
4 | 8 || Exists (4.6(iii)) (4x12) Exists (4.10(i))
8 | 4 || Non-existent (n < v) || (8x8) Exists (4.10(i))
16 | 2 || Non-existent (n < v) || (16x6) Exists (4.10(i))
32| 1 || Non-existent (n < v) || (32x5) Exists (4.10(1))

6 [1[6] 64 || 2 |32 Exists (4.6(0)) (2x37) Exists (4.10(1))
4 | 16 || Exists (4.6(iii)) (4x21) Exists (4.10(i))
8 | 8 || Exists (4.6(iii)) (8x13) Exists (4.10(1))
16 | 4 || Non-existent (n < v) || (16x9) Exists (4.10(i))
32 | 2 || Non-existent (n < v) [ (8x7) Exists (4.10(i))
64 | 1 || Non-existent (n < v) || (16x6) Exists (4.10(i))

213 64 1 | 64 || Non-existent (m < u) || (2x66) Exists (4.10(ii))

2 | 32 || Non-existent (4.5) (3x34) Exists (Figure 2)
4 | 16 || Exists (4.6(i)) (5x18) Exists (4.3())
8 | 8 || Exists (4.6(i)(b)) (9x10) Exists (4.3(ii))
16 | 4 || Exists (4.6(iii)) (17x6) Exists (4.3(ii))
32 | 2 || Non-existent (n < v) |l (33x4) Exists (Figure 3)
64 | 1 [| Non-existent (n < v) [| (65x3) Exists (4.10(ii))

Figure 4: Existence of small perfect binary 1-orientable window arrays

Semi-perfect aperiodic arrays

Semi-perfect aperiodic binary 1-orientable window arrays can again be derived from the
corresponding semi-perfect periodic arrays using Theorem 4.3(ii). However, as in the
perfect case, we can construct semi-perfect aperiodic arrays for parameter sets for which
periodic arrays cannot exist. The following two construction methods are simple modifi-

cations to Constructions 4.8 and 4.9 described above.

Construction 4.11 Suppose m,n,v are positive integers satisfyingn > v and m(n—v+
1) = 2¥ — 1. We construct an m by n binary array. Suppose A is a semi-perfect binary
periodic 1-orientable v-window sequence (which must have length 2 — 1). Partition the
sequence into m segments So, S1,...,Sm—1 each of length n — v+ 1 (this is possible since
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we have assumed that m(n —v+1) =2¥ - 1). To each segment adjoin the next v — 1 bits
of the sequence A (where necessary working cyclically) to obtain m sub-sequences of A:
To,T1,...,Tin—1 each of length n. Arrange these sub-sequences in any order to form the
m rows of an m by n array.

Construction 4.12 Suppose n,u,v are positive inlegers satisfyingn > vandn—v+1 =
2%¥ — 1. We construct a u by n binary array. Let ¢ = 2%, and suppose A is a semi-
perfect c-ary periodic I1-orientable v-window sequence (which must have length c* — 1 =
2% —1). Then, by Theorem 4.3(i), E,(A) is a semi-perfect aperiodic 1-orientable v-
window sequence, which we write as (a;), (0 < i < 2*+v—3). Since c = 2%, each element
of (a;) can be written as a u-bit binary tuple, b; say (using the binary representation of
a; with, if necessary, leading zeros added). Finally, define a u by 2*¥ + v — 2 binary array
with b; as column i (0 <1< 2% +v-3).

Theorem 4.13 (i) Suppose that m,n,v are positive integers satisfying n > v and
m(n—v+ 1) =2 -1, and that B is an m by n array constructed using Construc-
tion 4.11. Then B is an m by n semi-perfect aperiodic 1-orientable (1, v)-window
array.

(i) Suppose that n,u,v are positive integers satisfyingn > vandn—-v+1=2%"w -1,
and that C is a u by n array constructed using Construction 4.12. ThenC isau
by n semi-perfect aperiodic 1-orientable (u,v)-window array.

Proof

(i) Suppose A is the binary sequence of length 2¥ used to construct B. Suppose c is any
non-zero v-tuple. Then, by the semi-perfect property, ¢ occurs at a unique position
in A. The element of A corresponding to the first bit of ¢ will (trivially) occur in
a unique (n — v + 1)-bit segment, §; say. It should be clear that ¢ will then occur
in T}, and hence in B. Thus every non-zero binary v-tuple occurs at least once in
B, and hence exactly once in B (since B contains precisely m(n — v +1) = 2¥ — 1
aperiodic sub-arrays of size 1 by v).

(ii) Suppose A is the c-ary sequence of length 2“Y—1 used to construct C (where ¢ = 2%).
It should be clear that there is a 1-1 correspondence between the set of all non-zero
u by v binary arrays and the set of all non-zero c-ary v-tuples. Hence, since every
non-zero c-ary v-tuple occurs precisely once in A, every non-zero u by v binary array
will occur uniquely as an aperiodic sub-array of C. O

Other semi-perfect aperiodic arrays have been constructed by a number of authors. Of
particular note are the following.

¢ Nomura et al., [32], consider infinite 2-dimensional arrays in which every (m+u—1)
by (n 4 v — 1) sub-array contains every non-zero u by v matrix exactly once; they
call such arrays Mazimum Area Matrices. Clearly these arrays have the property
that every (m+u—1) by (n+v—1) sub-array forms a semi-perfect aperiodic window
array. Moreover, if the infinite array is also periodic with period m by n, then every
m by n sub-array forms a semi-perfect periodic window array. They construct many
such arrays.
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o Baneriji, [2], constructs two infinite families of semi-perfect aperiodic arrays by fold-
ing m-sequences. One family has the same parameters as those given by Construc-
tion 4.12 (see Theorem 4.13(ii)).

o Kanetkar and Wagh, [27], generalise the method of Banerji, [2], to construct many
semi-perfect aperiodic window arrays using ‘folded’ m-sequences. In particular they
construct arrays for every possible parameter set with uv < 15 and claim, with-
out proof, that their methods can be used to construct arrays for every possible
parameter set allowed by the definition.

We conclude this discussion of semi-perfect aperiodic binary window arrays by giving
a table of all possible parameter sets for semi-perfect periodic and aperiodic binary 1-
orientable (u,v)-window arrays for uv < 6, u < v and, where u = v, m < n. For each
parameter set we indicate the status of the existence question for both types of array. Note
that those parameter sets corresponding to semi-perfect binary sequences (i.e. m = u = 1)
have been omitted from the table.

w ||ul}v mn m|n|mbyn m+u—1byn+v-1
| “ (i 2% — 1) " Periodic | Aperiodic
(2 12 3 3 | 1 || Non-existent (n < v) || (3x2) Exists (4.13(i))
3 f1]3 7 7 | 1 || Non-existent (n < v) || (7x3) Exists (4.13(i))
A 1[4 15 3 | 5 || Exists (4.70)) (3x8) Exists (4.13(1))
5 | 3 || Non-existent (n < v) || (5x6) Exists (4.13(i))
15| 1 || Non-existent (n < v) || (15x4) Exists (4.13(i))
212 15 1 | 15 [| Non-existent (m < u) || (2x16) Exists (4.13(ii))
3 | 5 || Exists (4.7(i)) (4x6) Exists (4.3(ii))
5 11]5 31 31| 1 || Non-existent (n < v) || (31x5) Exists (4.13(i))
6 1|6 63 3 | 21 || Exists (4.7(1)) (3x26) Exists (4.13(1))
7 1 9 || Exists (4.7(i)) (7x14) Exists (4.3(ii))
9 | 7 || Exists (4.7(iii)) (9x12) Exists (4.3(ii))
21 | 3 || Non-existent (n < v) || (21x8) Exists (4.13(i))
63 | 1 [| Non-existent (n < v) || (63x6) Exists (4.13(1))
213 63 1 | 63 || Non-existent (m < u) || (2x65) Exists (4.13(ii))
3 | 21 || Exists (4.7(i)) (4x23) Exists (4.3(i1))
7197 (8x11) Exists ([27])
9 | 7 || Exists (4.70)) (10x9) Exists (4.3(1))
21 | 3 || Non-existent (4.7(iv)) || (22x5) Exists ([27])
63 | 1 [[ Non-existent (n < v) || (64x3) Exists (4.13(i1))

Figure 5: Existence of small semi-perfect binary 1-orientable window arrays

Finally observe that ‘sub-perfect’ aperiodic window arrays can be constructed from known
‘sub-perfect’ periodic window arrays using Theorem 4.3(ii).

4.3.2 The c-ary case

As before we consider the periodic and aperiodic cases separately.
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Periodic c-ary arrays

We start by generalising Lemma 4.5 to give a necessary condition for the existence of a
periodic c-ary 1-orientable (u,v)-window array which contains a ‘constant’ u by v sub-
array.

Lemma 4.14 If an m by n c-ary periodic I-orientable (u,v)-window array ezists which
has amongst its u by v periodic sub-arrays a u by v array all of whose entries are identical,
then

m>u or u=1

and
n>v or v=1.

Proof Suppose A is an m by n c-ary periodic 1-orientable (u,v)-window array with
m = u > 1, and suppose there exists a u by v periodic sub-array all of whose entries
are identical. Using the notation of Section 3.2, suppose the sub-array is A,:, where
0<s<m-1and 0 <t <n-—1. Then, since m = u, the sub-arrays A,,; will contain
the same entries as A, for every w (0 < w < m — 1). But since all the entries of A,
are equal, this means that A contains m identical periodic sub-arrays, contradicting the
definition of periodic window array. Hence m > u or u = 1.

A similar argument shows that » > v or v = 1 and the lemma follows. O.

There are few ezplicit constructions for c-ary perfect arrays (¢ > 2), although it would
appear that many of the constructions for the binary case can be generalised with little
effort (see, in particular, Etzion, [12]). Some of the known results on this problem can be
summarised as follows.

Theorem 4.15 (i) Given any positive integers u,v,c (c > 2) there ezists an m by n
perfect periodic c-ary 1-orientable (u,v)-window array for some m,n (Ivdnyi, [25]).

(i) Given any positive integer u and any odd c, then there exists a c¢* by c* perfect

periodic c-ary 1-orientable (u,2)-window array (Etzion, [12]).
(1i) For any pair of positive integers (u,v) an m by n perfect periodic c-ary 1-orientable

(u, v)-window array can only ezist if
(a) m>uoru=1, and
(b)) n>vorv=1

(from Lemma 4.14 above).

Some literature also exists on the construction of c-ary semi-perfect arrays (¢ > 2). In
particular note the papers of Etzion, [12], Nomura et al., [32], and MacWilliams and
Sloane, [34]). The following result summarises some of the main known existence results
regarding semi-perfect periodic c-ary 1-orientable window arrays.

Theorem 4.18 (i) Suppose q is a prime power and u, v and m are positive integers
where m|(¢* — 1). Let

If these integers satisfy
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(a) m|g* — 1 only if k > u, and
(b) ged(m,n) =1,

then there ezists an m by n semi-perfect periodic binary 1-orientable (u,v) window
array (Nomura et al., [32]).

(ii) For any pair of positive integers (u,v) an m by n semi-perfect binary I-orientable
periodic (u,v)-window array can only ezist if m > u and n > v (from Lemma 4.14
above).

Note that Dénes and Keedwell, [8] consider ‘sub-perfect’ c-ary window arrays.

Aperiodic c-ary arrays

As in the binary case, Theorem 4.3(ii) enables the construction of perfect and semi-perfect
aperiodic c-ary window arrays from periodic ones. Constructions 4.8, 4.9, 4.11 and 4.12
can all be generalised to the c-ary case to give further aperiodic arrays. Finally observe
that the constructions of Nomura et al, [32], Banerji, [2] and Kanetkar and Wagh, [27] all
generalise to the g-ary case, where ¢ is a prime power.

4.3.3 The decoding problem

The only work that appears to have been done on the decoding problem for arrays (as
opposed to sequences) is the recent result of Lloyd, [29]. Generalising the work of Paterson,
[33], Lloyd shows how to reduce the problem of decoding the Pseudorandom Arrays of
MacWilliams and Sloane (with the (ky, k2)-window property) to the problem of finding
the discrete logarithm of an element in GF(2F1%2).

5 2-orientable arrays

5.1 A fundamental inequality

As in the 1-orientable case, we start by deriving simple combinatorial bounds on the sizes
of periodic and aperiodic 2-orientable window arrays. However, an important difference
here is that, unlike the 1-orientable case where perfect arrays of unbounded size exist,
these bounds are not tight in general.

Lemma 5.1 The following bound must be satisfied by any m by n aperiodic 2-orientable
(u, v)-window array:
v — cl(uv+1)/2]

2

(m-—u+1)(n-v+1)<

Proof As noted in Section 3.2.5, a 2-orientable array can never contain any self-
symmetric sub-arrays. Of all the ¢*" possible u by v c-ary sub-arrays, precisely cl(*v+1)/2]
of them are self-symmetric. This is because a u by v array B = (b;;) is self-symmetric
if and only if Riso(B) = B, i.e. if and only if byj1-iy41-j = byj for every 7,7, (0 < ¢ <
u—-1,0<j<v-1).
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Hence
W — c[(uu+l)/2j

of the u by v arrays are candidates for sub-arrays of a 2-orientable array. Now, by
definition, an m by n array has (m — u+ 1)(n — v+ 1) aperiodic sub-arrays. By definition
of 2-orientable, the collection containing the aperiodic sub-arrays of A and Ryg9(A) must
all be distinct, and this collection contains 2(m — u + 1)(n — v + 1) arrays. Hence

2(m —u+1)(n—v+1) < ™ — clwrt)/2,

The result now follows. O.

Lemma 5.2 The following bound must be satisfied by any m by n periodic 2-orientable
(4, v)-window array:
v — cl(uv+1)/2)
mn <

- 2

Proof By definition, an m by n array has mn sub-arrays. Following the same argument
as in the proof of lemma 5.1, we have

2mn < ¢ — c[(uv+1)/2j.

The result now follows. O.

In the periodic binary sequence case, an improved bound has recently been obtained by
Dai et al., [6]. Similar improved bounds can almost certainly be obtained for the c-ary
periodic sequence case and the periodic array case (both binary and c-ary). The aperiodic
case is somewhat more difficult to handle; however, no doubt some results can also be
obtained here.

Before proceeding we give an example of a periodic binary 2-orientable 5-window sequence
(of length 6), given in Figure 6, which actually meets the new bound of Dai et al., [6].

(1 10100)

Figure 6: The unique periodic binary 2-orientable 5-window sequence of length 6

5.2 Existence of 2-orientable window sequences
5.2.1 Periodic sequences

We start by considering the binary case. Apart from sequences obtained from computer
searches (for small window length v), a recent construction method by Dai et al., [6] yields
the best known sequences for almost all values of v; these sequences are asymptotically
optimal in length. Very little work appears to have been done on the c-ary case. However,
it would seem likely that the construction of Dai et al., [6], can be generalised to give
c-ary periodic 2-orientable window sequences.
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5.2.2 Aperiodic s.equences

Just as in the 1-orientable case, by Lemma 3.1 aperiodic 2-orientable window sequences
can be derived from periodic sequences, and thus the construction of Dai et al., [6] can be
applied to give aperiodic binary window sequences. Apart from similar derivations from
periodic sequences, no general construction methods for aperiodic 2-orientable window
sequences are known. The table given in Figure 7 (derived by computer search) lists the
lengths of the longest known such sequences for 4 < v < 16. For v in therange4 <v < 7
the length given is the length of the longest such sequence, since for these values an
exhaustive search has been completed.

|| window size (v) | sequence length (n) ||
| 4 8
5 14
6 26
7 48
8 108
9 210
10 440
11 872
12 1860
13 3710
14 7400
15 15467
16 31766

Figure 7: Existence of small binary aperiodic 2-orientable window sequences

Even less work appears to have been done on the c-ary case (¢ > 2).

5.3 Existence of 2-orientable window arrays

Very little work has been done on this topic for either the periodic or the aperiodic case.
However, examples can be derived from the following simple construction technique.

Construction 5.3 Suppose A = (a;), (0 < 1 < m — 1) is a c-ary periodic 1-orientable
u-window sequence of length m (u > 1). Suppose B = (b;), (0 < j<n—1)isad-ary
periodic 2-orientable v-window sequence of length n (v > 1). Then construct an m by n
array £ = (e;;), (0<i<m-1,0<j<n-1), as follows. Let

e,-j=da.~+bj
foreveryi,7, (0<i<m-1,0<j<n-1).

Theorem 5.4 If E is constructed using Construction 5.3, then it is an m by n (cd)-ary
periodic 2-orientable (u,v)-window array.
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Proof First observe that, since 0 < a¢; < c—1and 0 < b; < d-1 for every i,7,
(0<i<m-1,0<j<n—-1), we immediately have

0<e;<dlc—1)+d-1=cd-1
and hence E is a (cd)-ary array.

We need to show that the periodic sub-arrays of E and Rigo(E) are all distinct. To do
this we need to consider two cases.

(a) Two sub-arrays of E. Suppose X = (€s4i¢+;) andY = (esrpipr+5) (0 €1 < u—1,0<
j < v—1) are u by v sub-arrays of E (where, if necessary, s+ and s’ 41 are reduced
modulo m and t + j and t' + j are reduced modulo n).

If X =Y then
€stit = €s/4it!
for every i, (0 < i < u —1). Thus, by definition of E,
Asqi = Qg'qg
for every i, (0 < i < u—1). Hence s = &, since A is 1-orientable. Similarly,

€s,t+j = €s't'+j
for every j, (0 < j < v — 1). Thus, by definition of E,
beyj = buyj
for every 7, (0 < j < v—1). Hence t = t/, since B is 2-orientable. Hence XandY

must be the same sub-array of E.

(b) One sub-array of E and one sub-array of Rygo(E). Suppose X = (estijt+;) is a u
by v sub-array of E and Y = (ey/4y-1-itr+v-1-;) i a u by v sub-array of Riso( E),
(0<i<u—-1,0<j<v-1). X =Y then

€stit+i = €s'u—1-it’+u—1~3

for every i,j, (0 <i < u—1,0< j <v—1). Thus, in particular,

€st4j = €5t/ py—1—j

for every j, (0 < j < v —1). Thus, by definition of E,

bt+] = bt'+v—l—j

for every j, (0 € j € v—1). But this contradicts the assumption that B is a
2-orientable v-window sequence.

The result follows. O

As an example of the above construction consider the array derived by setting A = (1100)
and B = (110100), where 4 is a periodic binary 1-orientable 2-window sequence and B
is a periodic binary 2-orientable 5-window sequence. The resulting 4 by 6 periodic 4-ary
2-orientable (2,5)-window array is given in Figure 8.

The periodic arrays derived from the above construction method can also be transformed
into aperiodic arrays using Lemma 3.1. Finally observe that, although the above con-
struction is useful in that it does provide examples of 2-orientable arrays, these examples
are far from optimal, and there is clearly a need for more research in this area.
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332322
3 32322
110100
110100

Figure 8: 4 by 6 periodic 4-ary 2-orientable (2,5)-window array

6 4-orientable arrays

6.1 A fundamental inequality

As before we start by giving simple combinatorial inequalities governing the sizes of
periodic and aperiodic 4-orientable window arrays. As in the 2-orientable case, in general
these bounds are not tight.

Lemma 6.1 The following bound must be satisfied by any m by n aperiodic 4-orientable
(u, v)-window array:
¥ — c[(uv+l)/2j

2Amn+uv—1)—(m+n+2)(ut+v-2)< 3

Proof As noted in Section 3.2.5, a 4-orientable array can never contain any self-
symmetric sub-arrays, i.e. arrays which map onto themselves under a rotation of 90,
180 or 270 degrees. Clearly, if an array maps onto itself under a rotation of 90 or 270
degrees then it will map onto itself under a rotation of 180 degrees. Hence, of all the ¢**
possible u by v c-ary sub-arrays, precisely cl(wv+1)/2] of them are self-symmetric (as in
the 2-orientable case).

Hence
MY — c[(uu+l)/ 2j

of the u by v arrays are candidates for sub-arrays of a 4-orientable array or one of its
rotations. Now, by definition, an m by n array has (m — u + 1)(n — v + 1) aperiodic sub-
arrays. Hence the collection of aperiodic sub-arrays of an m by n array and its rotations
by 90, 180 and 270 degrees contains a total of

A(m-u+1)(n—-v+1)+(m-—v+1)(n—-u+1))

arrays.

Since they must all be distinct we have
4(mn+uv — 1) = 2(m + n + 2)(u + v — 2) < ¢ — LD/,

The result now follows. O.

Lemma 6.2 The following bound must be satisfied by any m by n periodic {-orientable
(u,v)-window array:
v — cl(“"+1)/2.'

4

mn <
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Proof By definition, an m by n array has mn sub-arrays. Hence the collection of sub-
arrays of an m by n array and its rotations by 90, 180 and 270 degrees contains a total
of 4mn arrays. Following the same argument as in the proof of lemma 6.1 we have

4mn < c* - c[(1w+1)/2j’

and the result now follows. O.

6.2 Existence of 4-orientable window arrays

We start by repeating the observation (made in Section 3.2.3 above) that 4-orientable
sequences cannot exist. On the other hand, 4-orientable arrays certainly do exist, as
shown by the following.

Theorem 8.3 Suppose E is constructed from A and B using Construction 5.3, where
A is a c-ary periodic 2-orientable u-window sequence of length m (u > 1), B is a d-ary
periodic 2-orientable v-window sequence of length n (v > 1) and min (m,n) > max (u, v).
Then E is an m by n (cd)-ary periodic 4-orientable (u,v)-window array.

Proof First observe that, by Theorem 5.4, E is a 2-orientable (cd)-ary array. In addition,
since A is 2-orientable, we may apply the dual of Theorem 5.4, and hence Rgo(E) is also
2-orientable. Hence, to prove the desired result, we need only consider the following case.

Suppose X = (€s4i,t4;) is a u by v sub-array of Eand Y = (et'4j,s'+u—1-i) is a u by v
sub-array of Rgo(E), (0<i<u—~1,0<j<v-1). X =Y then

€stit+j = Ct'4js'u—1—i

for every i,7, (0 < i< u—1,0 <j<v-1). Thus, in particular,

€s,t+5 = Ct'4j,s

for every j, (0 < j < v — 1). Thus, by definition of E,
bH-j = b,l

for every j, (0 < j < v—1). Since v > 1, by repeating this argument for every possible
value of t (0 < t < v — 1) we can show that B must be a constant sequence. But this
contradicts the assumption that B is a 2-orientable v-window sequence.

The result now follows. O

As an example of the above construction consider the array derived by setting A = B =
(110100), where A = B is a periodic binary 2-orientable 5-window sequence. The resulting
6 by 6 periodic 4-ary 4-orientable (5,5)-window array is given in Figure 9.

The periodic arrays derived from the above construction method can also be transformed
into aperiodic arrays using Lemma 3.2. Finally observe that, just as in the 2-orientable
case, although the above construction is useful in that it does provide examples of 4-
orientable arrays, these examples are far from optimal.
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3323 22
332322
110100
332322
110100
110100

Figure 9: 6 by 6 periodic 4-ary 4-orientable (5,5)-window array

7 Other versions of the problem

We conclude this paper by briefly mentioning one way in which the combinatorial problem
considered above could be generalised. We have considered an application of window
sequences and arrays and surveyed known construction and decoding techniques. We have
restricted our attention to the one and two dimensional cases, although the definitions
could very easily be generalised to the multi-dimensional case.

It is not inconceivable that three and higher dimensional window arrays could find an
application, although very little is known about the existence and construction of such
arrays. It would appear likely that much of the theory for 2-dimensional arrays would
translate directly into corresponding results for the multi-dimensional case, although this
remains to be seen. The only published work in this area would appear to be that of
Green, [24], who generalises the Pseudorandom Array construction of MacWilliams and
Sloane, [31], to the multi-dimensional case, and that of Ivinyi, [26], who constructs three-
dimensional perfect periodic 1-orientable window arrays.
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