ALGORITHM REGISTER ENTRY

a) ISO Entry Name
b) Name of Algorithm
c) Intended Range of Application
d) Cryptographic Interface Parameters
\{iso standard 9979 multi2 (9) $\}$
MULTI2

1. Confidentiality
2. Hash Function - as detailed in ISO 10118-2
3. Authentication - as detailed in ISO 9798
4. Data Integrity - as detailed in ISO 9797
5. Input size 64 bits
6. Output size 64 bits
7. Key length:

Data key
System key
4. Round number

64 bits 256 bits positive integer
e) Test Data

ROUND NUMBER SYSTEM KEY DATA KEY INPUT DATA

128 all 0's for 256 bits of system key (01234567 89AB CDEF) hex (0000 000000000001)hex

INTERMEDIARY (4th ROUND) (772F 558A F46A C13B)hex INTERMEDIARY (8th ROUND) (696E F331 5EDF OBFB) hex INTERMEDIARY (16h ROUND) (9E89 DA58 87C0 B518) hex INTERMEDIARY (32th ROUND) (3F98 2A1F 459A B023) hex INTERMEDIARY (64th ROUND) (11BD C4D0 9DF3 99A8) hex

OUTPUT DATA (128th ROUND) (F894 4084 5E1 1 CF89)hex
f) Sponsoring Authority

Registration Requested by

Contact for Information

Information-Technology Promotion Agency, Japan (IPA)
Shuwashibakoen 3-chome Bldg., 6F, 3-1-38 Shibakoen,
Minato-ku/Tokyo 105, JAPAN
Tel:
+81-3-3437-2301
Fax:
+81-3-3437-9421
Hitachi, Ltd.
Software Development Center
Hisashi Hashimoto
Senior Engineer
Hitachi, Ltd.
Software Development Center
Workstation Network Software Department
TYG 11th Bldg. 16-1 3-chome, Nakamachi

Atsugi-shi 243, JAPAN

Tel:
+81-462-25-9271
Fax:
+81-462-25-9395
g) Date of submission

Date of registration
h) Whether the Subject of a National Standard
i) Patent - License Restriction
j) References
k) Description of Algorithm

14 November 1994

No.
Two patents registered:

One patent applied for:
3. Japan, No. 63-103919 fee is required. information on modes of operation.

1. United States Patent, No. 4,982,429
2. United States Patent, No. 5,103,479

For commercial use of MULTI2, a license and

See ISO 8372 or ISO/IEC 10116 for its

MULTI2 is a symmetric block cipher algorithm based on the permutation - substitution calculation like DES. Since MULTI2 was published in 1989, the cryptographic strength of MULTI2 has been tested through a number of cryptanalysis attacks. It is designed to realize a high performance on 32 -bit computers. For example, MULTI2 with the round number $\mathrm{N}=32$ exhibits the memory - memory encryption speed of about 1 Mbps per 1 MIPS computing power. As the full specification of MULTI2 is open, it can be used for software implementation of security mechanisms in open/multivendor networks.
See Appendix for detail.

1) Modes of operation
m) Other information

Modes of operation as defined in ISO 8372 or ISO/IEC 10116 are applicable:

1. Electronic Codebook (ECB) Mode
2. Cipher Block Chaining (CBC) Mode
3. Cipher Feedback (CFB) Mode
4. Output Feedback (OFB) Mode

In general, it is not possible to prove that an encryption algorithm and its environment are perfectly safe. However, a comparison of cryptographic strength between two encryption algorithms may help to obtain a safety measure. It is reported that MULTI2 with the round number less than thirty-two may be broken easier than DES. However, no method has been reported which can break MULTI2 with the round number thirty-two or more. The cryptographic strength of MULTI2 algorithm becomes higher as the round number N increases. On the other hand, the speed of MULTI2 encryption is almost inversely proportional to the round number. The encryption speed of MULTI2 with the round number thirtytwo is about 1 Mbps per 1 MIPS computing power. In some cases, it is recommended that a trade-off between the speed and the safety margin be examined to determine the round number of MULTI2.

APPENDIX: DETAIL OF MULTI2 ALGORITHM

Symbols
\oplus : bit-wise exclusive OR, + : addition in modulus $2^{32},-$: subtraction in modulus 2^{32},
Rots : s bits left circular rotation, V : bit-wise logical $O R, N$: round number
II : concatination of data elements,
Tleft] : the string composed of the 32 leftmost bits of the block T
Tright] : the string composed of the 32 rightmost bits of the block T

Definition of basic functions

1. $\pi 1$

Let T be the input to $\pi 1$. Then, the output of $\pi 1$ is obtained:
$\pi 1(\mathrm{~T})=\mathrm{T}$ [left] $11(\mathrm{~T}[$ left] $\oplus \mathrm{T}$ [right] $)$
2. $\pi 2$

Let T be the input to $\pi 2$. Let $k 1$ be the key value. Then, the intermediates x, y and z are calculated as:
$x=T$ [right]
$y=x+k 1$
$z=\operatorname{Rot} 1(y)+y-1$
The output of $\pi 2$ is obtained:
$\pi 2 k 1(T)=(T[l e t t] \oplus(\operatorname{Rot} 4(z) \oplus z)) \| T$ [right]
3. $\pi 3$

Let T be the input to $\pi 3$. Let k2 and k3 be the key values. Then, the intermediates x, y, z, a, b and c are calculated as:
$\mathrm{x}=\mathrm{T}$ [left]
$y=x+k 2$
$z=\operatorname{Rot} 2(y)+y+1$
$a=\operatorname{Rot} 8(z) \oplus z$
$b=a+k 3$
$c=\operatorname{Rot1}(b)-b$
The output of $\pi 3$ is obtained:
$\pi 3 \mathrm{k} 2, \mathrm{k} 3(\mathrm{~T})=\mathrm{T}[$ left $\mathrm{II}(\mathrm{T}$ Iright $] \oplus(\operatorname{Rot} 16(\mathrm{c}) \oplus(\mathrm{cV} \mathrm{x})))$

4. $\pi 4$

Let T be the input to $\pi 4$. Let $k 4$ be the key value. Then, the intermediates x and y are calculated as:
$x=T$ [right]
$y=x+k 4$
The output of $\pi 4$ is obtained:
$\pi 4 \mathrm{k} 4(\mathrm{~T})=(\mathrm{T}[\operatorname{left}] \oplus(\operatorname{Rot} 2(\mathrm{y})+\mathrm{y}+1)$) II T [right]

Key schedule

Let Dk be the data key.
Let Sk be the system key:
Sk=s1 \| s2 \| \cdots. \| s8
where $\mathrm{s} 1, \mathrm{~s} 2, \cdots$, s8 are 32-bit data blocks.
The work key Wk is obtained:
$\mathrm{a} 1=\pi 2 \mathrm{~s} 1 \cdot \pi 1(\mathrm{DK})$
$w 1=a 1[l e f t]$
$\mathrm{a} 2=\pi 3 \mathrm{~s} 2, \mathrm{~s} 3$ (a1)
w2=a2 [right]
$a 3=\pi 4 \mathrm{~s} 4(\mathrm{a} 2)$
w $3=\mathrm{a} 3$ [left]
a4 $=\pi 1$ (a3)
w4=a4 [right]
a5 $=\pi 2 \mathrm{~s} 5$ (a4)
w5=a5 [left]
a6 $=\pi 3 \mathrm{~s} 6, \mathrm{~s} 7$ (a5)
$w 6=a 6$ [right]
$\mathrm{a} 7=\pi 4 \mathrm{~s} 8(\mathrm{a} 6)$
$w 7=a 7$ [left]
$a 8=\pi 1$ (a7)
w8=a8 [right]
Wk=w1 !| w2 || . . . \| w8

