
CardSpace-Shibboleth Integration for CardSpace
Users

Haitham S. Al-Sinani and Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
[Haitham.Al-Sinani.2009, C.Mitchell]@rhul.ac.uk

Abstract. Whilst the growing number of identity management systems
have the potential to reduce the threat of identity attacks, major deploy-
ment problems remain because of the lack of interoperability between
such systems. In this paper we propose a simple, novel scheme to pro-
vide interoperability between two of the most widely discussed identity
systems, namely CardSpace and Shibboleth. In this scheme, CardSpace
users are able to obtain an assertion token from a Shibboleth-enabled
identity provider that can be processed by a CardSpace-enabled relying
party. We specify the operation of the integration scheme and also de-
scribe an implementation of a proof-of-concept prototype. Additionally,
security and operational analyses are provided.

Keywords: CardSpace, Shibboleth, Interoperability, Browser Extension

1 Introduction

A number of identity systems have been designed in order to simplify man-
agement of identities and mitigate identity-oriented attacks, e.g. CardSpace1,
Shibboleth2, OpenID3, and Liberty Alliance4 [1–4]. Most identity management
architectures involve the following main roles.

1. The identity provider (IdP), which issues an identity token to a user.

2. The service provider (SP), or the relying party (RP) in CardSpace terminol-
ogy, which consumes the identity token issued by the IdP in order to identify
the user, before granting him/her access.

3. The user (or principal).

4. The user agent (UA), i.e. software employed by a user to send requests to
webservers and receive data from them, such as a web browser.

1 http://msdn.microsoft.com/en-us/library/aa480189.aspx
2 http://shibboleth.internet2.edu/
3 http://openid.net/
4 http://www.projectliberty.org — note that all Liberty specifications have been

contributed to the Kantara Initiative (kantarainitiative.org).



An IdP supplies a UA with an authentication token that can be consumed
by a particular SP. Whilst one SP might solely support CardSpace, another
might only support Shibboleth. Therefore, to make these systems available to
the largest possible group of users, effective interoperability between systems is
needed. In this paper we investigate a case involving a CardSpace-enabled RP
(CE-RP), a Shibboleth-enabled IdP (SE-IdP), and a UA that is only CardSpace-
enabled. The goal is to develop an approach to integration that is as transparent
as possible to IdPs, RPs and identity selectors.

We consider CardSpace-Shibboleth interoperation because of Shibboleth’s
wide adoption. Complementing this, the wide use of Windows, recent versions of
which incorporate CardSpace, means that enabling interoperation between the
two systems is likely to be of significance for large numbers of identity manage-
ment users and SPs. CardSpace-Shibboleth interoperation is also attractive since
both schemes support user authentication as well as exchange of user attributes.
In addition, they both support SAML tokens.

The remainder of the paper is organised as follows. Section 2 presents an
overview of CardSpace and Shibboleth, and section 3 describes the proposed
integration scheme. In section 4, we underline certain advantages of the scheme
and, in section 5, we discuss implementation issues. In section 6 we describe a
prototype realisation, and section 7 highlights possible areas for related work.
Finally, section 8 concludes the paper.

2 CardSpace and Shibboleth

2.1 CardSpace

Introduction. CardSpace provides a secure and consistent way for users to
control and manage personal data, to review personal data before sending it to
a website, and to verify the identity of visited websites. It also enables websites
to obtain data from users, e.g. to support user authentication and authorisation.

Digital identities are represented to users as Information Cards (or Info-
Cards), XML-based files that list the types of claim made by one party about
itself or another party. The concept is inspired by real-world cards, such as driv-
ing licences and credit cards. A user can employ one InfoCard with multiple
websites, or can use separate InfoCards at different websites, helping to enhance
user privacy and security. There are two types of InfoCards: personal (self-issued)
cards, and managed cards issued by remote IdPs. Personal cards are created by
users themselves, and the claims listed in such an InfoCard are asserted by the
self-issued identity provider (SIP) that co-exists with the CardSpace identity
selector (CIdS) on the user machine. InfoCards, personal or managed, do not
contain sensitive information, but instead carry metadata indicating the types
of personal data associated with this identity, and from where assertions regard-
ing this data can be obtained. The data referred to by personal cards is stored
on the user machine, whereas the data referred to by a managed card is held by
the IdP that issued it [5–7].



By default, CardSpace is supported by Internet Explorer (IE) from version
7 onwards. Extensions to other browsers, such as Firefox and Safari, also exist.
An updated version, CardSpace 2.0 Beta 2, was released, although Microsoft
announced in early 2011 that it will not ship; instead Microsoft has released
a technology preview of U-Prove5. In this paper we refer throughout to the
CardSpace version that is shipped by default as part of Windows Vista and
Windows 7, that is available as a free download for XP and Server 2003, and
which has been approved as an OASIS standard [8].

Operational Protocol. In order to maximise interoperability with non-Win-
dows platforms, CardSpace has been specifically designed to use open standards-
based protocols, notably the WS-* standards including WS-Policy/WS-Security
Policy [9, 10], WS-MetadataExchange [11], WS-Trust [12] and WS-Security [13].
Note that HTML/XHTML and/or HTTP/S can be used in place of most of
these standards; e.g. instead of using WS-Policy/WS-SecurityPolicy, a website
can simply describe its policy in HTML/XHTML.

The integration scheme makes use of CardSpace personal cards, and thus we
next describe their operation. Note that the scheme does not affect the use of
managed cards.

The CIdS allows a user to create a personal card and populate its fields with
self-asserted claims. CardSpace restricts the contents of personal cards to non-
sensitive data in the form of 14 editable claim types, namely First Name, Last
Name, Email Address, Street, City, State, Postal Code, Country/Region, Home
Phone, Other Phone, Mobile Phone, Date of Birth, Gender and Web Page. Data
inserted in personal cards is stored in encrypted form by the SIP on the user
machine, separately to the cards themselves.

When using personal cards, CardSpace adopts the following protocol. We
describe the protocol for the case where the RP does not employ a security token
service (STS), software responsible for security policy and token management
within an IdP and, optionally, within an RP [14].

1. UA → RP. HTTP/S request: GET (login page).
2. RP → UA. HTTP/S response. A login page is returned containing the

CardSpace-enabling tags in which the RP security policy is embedded.
3. User → UA. The RP page offers the option to use CardSpace; selecting this

option activates the CIdS, which is passed the RP policy. If this is the first
time that this RP has been contacted, the CIdS will display the identity of
the RP giving the user the option to either proceed or abort the protocol.

4. CIdS → InfoCards. The CIdS, after evaluating the RP policy, highlights
those InfoCards matching the policy and greys out the rest. InfoCards pre-
viously used for this RP are displayed in the upper half of the selector screen.

5. User → CIdS. The user chooses a personal card. (Alternatively, the user
could create and choose a new personal card). The user can preview the

5 http://blogs.msdn.com/b/card/archive/2011/02/15/

beyond-windows-cardspace.aspx



card (with its associated claims) to ensure that they are willing to release
the claim values. Of the claims specified in an InfoCard, only those requested
in the RP policy will be passed to the requesting RP.

6. CIdS 
 SIP. The CIdS creates and sends a SAML-based Request Secu-
rity Token (RST) to the SIP, which responds with a SAML-based Request
Security Token Response (RSTR).

7. CIdS → UA → RP. The RSTR is passed to the UA, which forwards it to
the RP.

8. RP → user. The RP verifies the token, and, if satisfied, grants access.

Private Personal Identifiers (PPIDs). When a user creates a new personal
card, CardSpace generates an ID and a master key for this card. The card ID is a
globally unique identifier (GUID), and the master key is 32 bytes of random data.
When a user first uses a personal card at a particular RP, CardSpace generates
a site-specific PPID by combining the card ID with data taken from the RP
certificate, and a site-specific signature key pair by combining the card master
key with data taken from the RP certificate. The RP domain name and/or IP
address is used if no RP certificate is available.

Since the PPID and key pair are RP-specific, the PPID does not function as
a global user identifier, helping to enhance user privacy and reduce the impact
of PPID compromise. The CIdS displays a shortened version of the PPID to
protect against social engineering attacks and improve readability.

When a user first interacts with an RP using CardSpace, the RP retrieves
the PPID and the public key from the received SAML security token, and stores
them. If a personal InfoCard is re-used at a site, the supplied security token will
contain the same PPID and public key as used previously, and will be signed
using the corresponding private key. The RP compares the received PPID and
public key with its stored values, and verifies the digital signature.

The PPID could be used on its own as a shared secret to authenticate a user
to an RP. However, it is recommended that the associated (public) signature
verification key, as held by the RP, should always be used to verify the signed
security token to provide a more robust authentication method [5].

Proof Keys. A SAML security token can be coupled with cryptographic ev-
idence to demonstrate the sender’s rightful possession of the token [14, 15]. To
achieve this, a security token can be associated with symmetric or asymmetric
proof keys. If a symmetric key token is requested by the RP, a shared secret
proof key is established between the CIdS and the CardSpace-enabled IdP [15],
which is then revealed to the RP. If an asymmetric key token is requested, the
CIdS generates an ephemeral RSA key pair and sends the public part of the key
(along with a supporting signature proving ownership of the corresponding pri-
vate key) to the CardSpace-enabled IdP [15]. If approved by the IdP, the public
part is then sent to the RP in the security token and the private part of the
RSA key pair is used by the client to prove the subject’s rightful possession of
the security token. Although the use of such a key may not be as efficient as the



symmetric approach, it helps to protect user privacy since the RP identity does
not need to be disclosed to the IdP.

Note that the default behaviour of the CIdS is different in the special case of
browser-based client interactions with a website, in which case ‘bearer’ tokens
are requested. Because a web browser is only capable of submitting a token to
a website passively over HTTP without any proof-of-possession, bearer tokens
with no proof keys are used [16].

2.2 Shibboleth

Introduction. The Shibboleth specifications define a set of interactions be-
tween an IdP and an SP to support single sign-on and attribute exchange [17].
It is estimated that over 4 million university students, staff, and faculty are
involved in Shibboleth federations6. In addition to IdPs and SPs, the Shibbo-
leth architecture includes an optional component called WAYF (Where Are You
From), supporting IdP discovery. Alternatively, the role of the this component
can be taken by the SP. Shibboleth supports the following profiles.

– Browser Post Profile (BPP). In this profile the SAML messages ex-
changed between the IdP and SP are embedded in HTML forms, which can
be sent automatically by JavaScript-enabled browsers. The scheme proposed
here supports this profile.

– Artifact Profile. This profile involves embedding an artifact (i.e. an opaque
reference) in a URL exchanged between the IdP and SP via browser redi-
rection. It also requires direct (back-channel) SP-IdP communication, where
the SP uses the artifact to retrieve the full SAML assertion from the IdP.
As it requires direct SP-IdP communication, which is inconsistent with the
CardSpace approach7, the proposed scheme does not support this profile.

Protocol Operation. We next describe the Shibboleth protocol, covering the
main differences between the two profiles introduced above.

1. UA → SP. The principal navigates to a Shibboleth-protected page.
2. SP→ UA. The SP generates an authentication request and redirects the UA

to either a WAYF or directly to an IdP. A WAYF is typically used if the SP
wishes to delegate the task of IdP discovery.

3. UA 
 WAYF (optional). If a WAYF is used, it interacts (via unspecified
means) with the UA to allow the principal to select an IdP. The WAYF then
redirects the UA to the principal-selected IdP with the SP’s authentication
request. Note that the WAYF can offer the principal the option to store their
choice of IdP for subsequent logins.

4. IdP 
 principal. If necessary8, the IdP authenticates the principal via some
means outside the scope of Shibboleth.

6 http://en.wikipedia.org/wiki/Shibboleth_(Internet2)
7 In CardSpace, RP-IdP interactions pass via the CIdS on the user machine.
8 Authentication may be unnecessary if a valid authentication session already exists.



5. IdP→UA→SP. The IdP generates a digitally-signed SAML assertion (if the
BPP is used) or a SAML artifact (if the artifact profile is used) and redirects
the UA to the SP. Note that the SAML assertion may assert attributes in
addition to asserting that the user has been authenticated. Note also that if
the BPP is used, the next step is skipped.

6. SP
IdP (optional). The SP uses the artifact received in the previous step
to issue an attribute query to the IdP, which directly responds with a SAML
response message. Note that this communication takes place via a mutually-
authenticated back-channel.

7. SP→ principal. The SP verifies the token, and, if satisfied, grants access.

Note that two ‘major’ Shibboleth versions have been released: Shibboleth 1.3,
which builds on SAML 1.1 specifications [17–19], and Shibboleth 2.0, which
builds on SAML 2.0 standards; v2.0 is backward compatible with v1.39.

Attributes. Shibboleth uses the SAML attribute request protocol to allow at-
tribute sharing between IdPs and SPs. Such an attribute exchange is, however,
optional since an SP may only request an authentication assertion. Approxi-
mately 40 attributes have been defined as ‘common’ identity attributes, includ-
ing the six ‘highly recommended’ attributes, namely givenName, sn (surname),
cn (common name), eduPersonScopedAffiliation, eduPersonPrincipalName and
eduPersonTargetedID [19].

Proof of Ownership. In many identity management systems it is important
for the user to have the means to prove to an SP that it owns the assertion
generated by an IdP; such mechanisms are often referred to as proof-of-possession
methods. As stated earlier, Shibboleth 2.0 builds on SAML 2.0, which offers three
proof-of-possession methods (also referred to as subject confirmation methods):
Holder-of-Key (HoK), Sender-Vouches, and bearer [20]. The HoK method [21]
can be used to address both the symmetric and asymmetric proof-of-possession
requirements of a CE-RP.

2.3 Comparison

Table 1 compares the CardSpace and Shibboleth systems [6, 22].

3 The Integration Scheme

We now describe the novel scheme. The parties involved are a CE-RP, a CardSpace-
enabled UA (e.g. a suitable web browser such as IE), a SE-IdP, and a browser
extension implementing the protocol described below.

9 http://shibboleth.internet2.edu/shib-v2.0.html#new



Table 1. CardSpace versus Shibboleth

CardSpace Shibboleth

Type active client-based redirect-based

IdP discovery performed on the client (CIdS) performed on the server (WAYF)

Phishing resistance strong scenario-dependent

Attribute exchange supported supported

Self-issued assertions supported unsupported

Identity federation unsupported supported

Proof of Ownership supported supported

Pseudonyms used (e.g. PPID) used

Token format many formats including SAML SAML

3.1 Preconditions

The scheme has the following requirements.

– The user must have an existing relationship with both a CE-RP and a SE-
IdP (thus the IdP will have a means of authenticating the user). Note that
both the RP and the user must trust the IdP.

– The CE-RP must not employ an STS. Instead, the RP must express its
security policy using HTML/XHTML, and interactions between the CIdS
and the RP must be based on HTTP/S via a web browser (a simpler and
probably more common scenario for RP interactions). This is because the
scheme uses a (JavaScript-driven) browser extension, and is thus incapable
of managing the necessary communications with an RP STS.

– To enable IdP-discovery, the browser extension must be able to operate a
WAYF-like component and offer the user the option to store their choice of
IdP for future logins.

– The CE-RP must incorporate three pieces of functionality outside of that
normally required of a CE-RP:

• it must be capable of processing SAML 2.0 tokens;

• it must be capable of processing a ‘CardSpace-like’ SAML token pro-
vided by the browser extension, which includes a signed SAML assertion
generated by a SE-IdP and a signed SAML assertion generated by the
SIP on the client machine; and

• it must be capable of verifying the signature of a SE-IdP on a SAML
assertion, as included in the SAML token provided by the extension.

– The SE-IdP must be prepared to provide SAML assertions for SPs for which
a federation agreement does not exist for the user concerned10.

10 It is thus not necessary for the user to Shibboleth-federate the IdP with the RP
(which would be difficult to achieve given that we are not requiring the RP to be
Shibboleth-enabled).



3.2 Protocol Flow

The protocol operates as follows, with step numbers as shown in figure 1. Steps
1, 2, and 4–7 of the integration scheme are the same as steps 1, 2, and 3–6,
respectively, of the CardSpace personal card protocol given in section 2.1, and
hence are not described again here.

3. Browser extension → UA. The extension performs the following steps.

(a) It scans the login page to detect whether the RP website supports
CardSpace. If so, it proceeds; otherwise it terminates.

(b) It examines the RP policy to check whether the use of personal cards is
acceptable. If so, it proceeds; otherwise it terminates, giving CardSpace
the opportunity to operate normally.

(c) It temporarily keeps a local copy of any RP-requested claims.

8. CIdS → UA → SE-IdP. Unlike in the ‘standard’ case, the RSTR is not sent
to the RP; instead the browser extension intercepts the RSTR and performs
the following steps.

(a) It asks the user to discover whether the use of Shibboleth-based authen-
tication is required. If so, it proceeds; otherwise it terminates, giving
CardSpace the opportunity to operate normally. Note that the browser
extension offers the user the option to store their answer for subsequent
logins at this RP.

(b) It displays a WAYF-like component to allow the user to select the ap-
propriate SE-IdP. Note that the browser extension offers the user the
option to store their selection for subsequent logins at this RP.

(c) It constructs a SAML authentication request, and forwards it to the
user-selected SE-IdP. Note that this request will also indicate the RP-
requested user attributes (if any) which are to be asserted by the SE-IdP.
The browser extension will know what they are since they were stored
by it in step 3c.

9. SE-IdP 
 user. If necessary, the SE-IdP authenticates the user. If successful,
the IdP generates and returns a digitally-signed SAML token to the UA, con-
taining an authentication statement and, possibly, an attribute statement.

10. Browser extension→ UA→ RP. The extension generates an unsigned SAML
token (with a nonce and time-stamp) that contains both the (digitally-
signed) SIP-issued RSTR as well as the (digitally-signed) Shibboleth-issued
token. The UA then forwards the browser extension-generated SAML token
to the CE-RP, optionally after first obtaining permission from the user.

11. RP → user. The RP verifies the received SAML token (including verifying
the RSTR signature, PPID, the Shibboleth signature, nonces, time-stamps,
etc.), and, if satisfied, grants access.

If an attribute assertion is required, the RP could, in step 11, compare
the (locally) SIP-asserted attributes with the (remotely) Shibboleth-asserted at-
tributes. Such a procedure could give the RP added guarantees about the validity
of these attributes.



Given that we have assumed that the RP supports SAML 2.0 tokens, there is
no need to modify the proof-of-possession data since the RP can use the Shibbo-
leth/SAML 2.0-supported HoK [21] method (which can be symmetric or asym-
metric) to express its proof-of-possession requirements. However, a symmetric
proof key should only be used if the user is willing to disclose the identity of the
RP to the IdP, and if the RP holds a valid certificate. For browser-based appli-
cations (and also where no proof-of-possession is needed), the scheme supports
bearer tokens [15, 16, 20].

Finally observe that the additional steps above can be integrated into the
CardSpace framework relatively easily, as the prototype implementation shows.

Fig. 1. Protocol exchanges

4 Advantages of the Scheme

4.1 Defeating Phishing

The scheme mitigates the risk of phishing. This is because the user interacts with
a browser extension-operated WAYF running on the user machine to select the
IdP. Hence, the RP will not be able to redirect the user to an IdP of its choosing.
By contrast, in OpenID, Liberty and in some Shibboleth scenarios (e.g. where a



WAYF is not used), a malicious RP could redirect a user to a fake IdP, which
might capture the user credentials [23].

4.2 Integration at the Client Side

Many IdPs/RPs may not accept the burden of supporting two identity man-
agement systems (IdMSs) simultaneously, unless there is a significant financial
incentive. Currently, major Internet players do not provide any means of in-
teroperation between IdMSs. As a result, a client-side technique for supporting
interoperation could be practically useful. Such a technique avoids (to a cer-
tain extent) any impact on the performance of the server (since the overhead is
handled by the client), and could also reduce the load on the network.

5 Implementation Issues

We now consider implementation and applicability issues of the scheme.

5.1 Token Storage and Forwarding

The means by which the security token is forwarded to the RP and how/where
the RSTR token is stored must be chosen carefully. We refer to the numbered
protocol steps given in section 3.2.

The responsibility for delivering the security token could be given to the
SE-IdP (as is normally the case when using the BPP profile). In this case the
RP address could be added to the SAML authentication request (as prepared
in step 8) so that the IdP knows which RP it must forward the token to (again
as is normally the case for the Shibboleth profiles). Although this would avoid
the need for changes to the normal operation of the SE-IdP and potentially also
help auditing, such an approach has privacy implications since the IdP would
learn the identity of the RP.

As a result, as specified in step 10 of the proposed scheme, the responsibility
for sending the security token to the RP is given to the UA. Thus a means is
required for giving the browser extension the address of the RP, so that it can
forward the token. We next consider three possible ways in which the RP address
might be made available.

– The RP address could be stored in the browser extension itself. Whilst this
puts the user in control, it is not user-friendly, as it would require users to
manually add the address of each RP into the code of the browser extension.

– After the security token is returned from the SE-IdP, the browser extension
could ask the user to enter the RP address, e.g. using a JavaScript pop-
up box or an HTML form. However, this approach is inconvenient, since it
would require users to always manually enter the RP address. Nevertheless,
this effect could be mitigated if the user’s choice could be stored.



– The browser extension could store the RP address as well as the RSTR
message in encrypted form in a cookie(s) as part of step 3, so that the
browser extension is able to obtain them in step 10. In order to adhere to
cookie security rules [24], this must be done in such a way that the browser
believes it is communicating with the same domain when the cookie is set
and when it is retrieved11.
To achieve this, the browser extension encrypts and stores the RP address in
a cookie in step 3, before the CIdS is invoked. As part of step 8, the browser
extension retrieves the encrypted value from the cookie and sends it to the
IdP as a hidden variable in an HTML form or as a query URL parameter.
Similarly, the extension in step 8 also encrypts the RSTR (after intercepting
it) and sends it to the IdP as a hidden variable in an HTML form.
As part of step 10, the IdP returns the encrypted RP address and the en-
crypted RSTR to the UA (again as a hidden form variable or as a URL
parameter). The browser extension then retrieves the encrypted values and
decrypts them to obtain the RP address and the RSTR.
Note that the IdP is unable to read the RP address or the RSTR (thus
protecting user privacy) since they are encrypted using a key known only to
the browser extension. If the IdP, however, needs the RP address for auditing
purposes (e.g. for legal reasons), or the IdP policy requires the disclosure of
the RP identity (e.g. so it can encrypt the security token using the RP’s
public key), then the RP address could be sent in plain text to the IdP.
Finally note that the Shibboleth specification allows the RP to use a hidden
form variable called ‘RelayState’ to maintain state in an RP-UA-IdP session.
A Shibboleth-compliant RP could insert data into this variable and the SE-
IdP must return this data intact in the same hidden form variable. We
propose to use this ‘RelayState’ variable in our scheme to transfer/maintain
the encrypted versions of the RP address and the RSTR message.

5.2 Attribute Handling

The two systems (CardSpace and Shibboleth) use two different sets of attribute
types12; this clearly causes a problem in creating a SAML (attribute) request
message for a Shibboleth IdP from a policy statement provided by a CE-RP.
We outline two approaches to dealing with the problem.

1. We could restrict the CE-RP to requesting only CardSpace personal card
style attributes. The browser extension would then need to convert the re-
quested attributes to Shibboleth style attributes, and include the converted
attribute types in the SAML request message sent to the SE-IdP. An exam-
ple mapping is shown in table 2. Note that in this case the CE-RP will still
have to understand the Shibboleth style attributes, since the SE-IdP SAML

11 Note that creation of and access to the cookie is handled by the browser extension
transparently to RPs and IdPs.

12 As stated in sections 2.1 and 2.2, CardSpace personal cards currently only support
fourteen editable attributes, whereas Shibboleth supports many more.



Table 2. CardSpace-Shibboleth attribute mapping

CardSpace personal cards Shibboleth

givenname givenName

surname sn

givenname + surname cn

emailaddress mail

assertion will include Shibboleth attributes. However, the browser extension-
produced SAML token, generated in step 10, could be extended to include
a means of CardSpace-Shibboleth attribute mapping.

2. Alternatively, the CE-RP could be permitted to request any of the Shibboleth-
supported attributes. If an attribute not supported by CardSpace personal
cards is requested (and given that the CE-RP permits the use of any IdP),
then the browser extension would need to be configured to request it from
the user-selected SE-IdP. However if any attributes are required that are
outside the set permitted in a personal card, then the CIdS will clearly not
highlight any of the personal cards.
In order to cause the CIdS to highlight personal cards, the browser extension
must modify the CE-RP policy. In particular, as part of step 3 the browser
extension must (after storing them) strip out the attributes that are outside
of the set supported by personal cards, and then request them from a SE-
IdP as part of step 8. Note, however, that such a modification will prevent
CardSpace from operating normally in the case where a personal card is
requested. Nevertheless, if the CE-RP specifies the use of managed cards
(i.e. does not permit personal cards), then the system would still operate
normally, since the extension will shut down if it sees such a policy statement.

Finally, we observe that in order to support the broadest range of user attributes,
the browser extension could be configured to support both of the approaches
described above.

5.3 Applicability of the Scheme

Although the integration scheme is presented as Shibboleth-specific, we suspect
that a modified version of the scheme could also be applied to other SAML-
compliant IdPs. Given that SAML 2.0 represents a convergence of SAML 1.1,
Liberty ID-FF 1.2 and Shibboleth 1.3, a mapping seems likely to be possible.

Reconfiguring the integration scheme to interoperate with any SAML-aware
IdP potentially significantly increases its applicability and practicality; such a
reconfiguration remains possible future work.

6 Prototype Realisation

We next give details of a prototype implementation of the scheme, which operates
with the Shibboleth BPP.



6.1 Implementation Details

The prototype is coded in JavaScript, chosen because its wide adoption should
simplify the task of porting the prototype to a range of other browsers. It uses the
Document Object Model (DOM) to inspect and manipulate HTML pages and
XML documents. The JavaScript code is executed using a C#-driven browser
helper object (BHO), a Dynamic-link library (DLL) module designed as a plug-
in for IE. Once installed, the BHO attaches itself to IE, thus gaining access to the
current page’s DOM. The prototype can readily be enabled or disabled using the
add-on manager in the IE ‘Tools’ menu. Note that the integration plug-in does
not require any changes to default IE security settings, thus avoiding potential
vulnerabilities that might result from such changes. Note also that the scheme
operates with both the CardSpace and the Higgins13 identity selectors without
any modification.

6.2 Operation

We next consider specific operational aspects of the prototype. Prior to use, the
user must have accounts with a CE-RP and a SE-IdP. We refer throughout to
the numbered protocol steps given in section 3.2.

In step 3 the plug-in uses the DOM to perform the following processes.

3.1 It scans the web page in the following way14.
(a) It searches through the HTML elements of the web page to detect

whether any HTML forms are present. If so, it searches each form, scan-
ning through each of its child elements for an HTML object tag.

(b) If an object tag is found, it retrieves and examines its type. If it is of
type ‘application/x-informationCard’ (which indicates website support
for CardSpace), it continues; otherwise it aborts.

(c) It retrieves and stores in a cookie the name attribute of the CardSpace
object tag. This is important since the RP server will use this name to
retrieve the token from the HTTP POST array.

(d) It searches through the param tags (child elements of the retrieved
CardSpace object tag) for the ‘issuer’ tag and examines its value; if it is
‘http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self’, in-
dicating that the use of personal (self-issued) cards is acceptable, it con-
tinues15; otherwise it terminates.

(e) It retrieves the ‘requiredClaims’ and ‘OptionalClaims’ tags from the
param tags. It obtains and temporarily stores in a cookie the mandatory
and optional claim types listed in these tags.

13 http://wiki.eclipse.org/GTK_Selector_1.1-Win
14 The CardSpace user guide [14] specifies two HTML extension formats that can

be used to invoke the CIdS from a web page, both of which involve placing the
CardSpace object tag inside an HTML form. This motivates the choice of the web
page search method.

15 The plug-in also continues if the value of the ‘issuer’ tag is set to ‘any’, ‘∗’ or if the
‘issuer’ tag is absent, since the use of personal cards is acceptable in these cases.



3.2 It adds a JavaScript function to the head section of the HTML page to in-
tercept the XML-based authentication token (i.e. the RSTR message) before
it is sent back to the RP (such a token will be sent by the CIdS in step 8).

3.3 It obtains the current action attribute of the CardSpace HTML form, en-
crypts it using AES [25] with a secret key known only to the plug-in, and
then stores it in a cookie. This attribute specifies the URL address of a web
page at the CE-RP to which the authentication token must be forwarded
for processing. If the attribute is not a fully qualified domain name address,
the JavaScript inherent properties, e.g. document.location.protocol and/or
document.location.host, are used to help reconstruct the full URL address.

3.4 It changes the current action attribute of the CardSpace HTML form to
point to the newly created ‘interception’ function (see step 3.2 above).

3.5 It creates and appends an ‘invisible’ HTML form to the HTML page to be
used later for sending the SAML token request to the SE-IdP.

In step 8 the plug-in uses the DOM to perform the following steps.

8.1 It intercepts the RSTR message sent by the CIdS using the added function.
8.2 Using a JavaScript pop-up box, it asks the user whether the use of Shibboleth-

based authentication is required. If so, it proceeds; otherwise it terminates,
giving CardSpace the opportunity to operate normally. On proceeding, the
plug-in offers to store the user’s answer using a plug-in-embedded checkbox;
if checked, the plug-in stores the user answer in a persistent cookie.

8.3 It encrypts the RSTR using AES with a secret key known only to the plug-in.
8.4 It prompts the user to select an IdP using a WAYF-like component, imple-

mented as a plug-in-embedded HTML form containing a drop-down list.
8.5 It offers to store the user’s choice of IdP using a plug-in-embedded checkbox;

if checked, the plug-in stores the user selection in a persistent cookie.
8.6 It constructs a SAML request, which conforms to SAML 1.1 syntax if the

IdP is Shibboleth 1.3-complaint and to SAML 2.0 syntax if the IdP is Shib-
boleth 2.0-compliant. The plug-in learns the IdP’s version from the plug-in-
operated WAYF. Note that this request will also indicate the RP-requested
user attributes (if any) that are to be asserted by the SE-IdP. The plug-in
will know what they are since they were stored by it earlier (see step 3.1.e).

8.7 It writes the entire (Base64 encoded) SAML request message as a hidden
variable (SAMLRequest) into the invisible HTML form created earlier (see
step 3.5 above).

8.8 It retrieves the encrypted RP URL from the appropriate cookie and inserts it
together with the encrypted version of the RSTR message into the invisible
form as the hidden variable ‘RelayState’.

8.9 It writes the URL of the SE-IdP into the action attribute of the form.
8.10 It auto-submits the form (transparently to the user), using the JavaScript

method ‘click()’ on the ‘submit’ tag, thus redirecting the user to the SE-IdP.

In step 10, the plug-in operates as follows.

10.1 It recovers the encrypted string from the RelayState HTML hidden variable
and decrypts it using its internally stored secret key. The SIP-issued RSTR
and the RP URL are then recovered from the decrypted data.



10.2 It generates a SAML token with a unique ID, nonce and a time-stamp,
referred to here as the ‘user token’. The plug-in embeds the signed SIP-
issued RSTR (retrieved in the previous step) and the signed Shibboleth-
issued SAML response message (after retrieving it from the SAMLResponse
HTML hidden variable) into the (unsigned) user token.

10.3 It inserts the RP URL (retrieved in step 10.1) into the action attribute of
the HTML form carrying the received SAML token.

10.4 It displays a plaintext version of the token to the user and requests consent
to proceed. The displayed text indicates the types of attributes the user
token is carrying, as well as the exact RP URL to which the token will be
forwarded. The JavaScript ‘confirm()’ pop-up box is used to achieve this.

10.5 If the user agrees to submission of the token, it seamlessly submits the
token to the RP using the JavaScript ‘click()’ method.

The prototype has been successfully tested with experimentally-implemented
websites (acting as the SE-IdP and the CE-RP) as well as with the current
(unmodified) CIdS.

6.3 Limitations

The plug-in must scan every browser-rendered web page to detect whether it
supports CardSpace, and this may affect system performance. However, informal
tests on the prototype suggest that this is not a serious issue. In addition, the
plug-in can be configured so that it only operates with certain websites.

If the web browser is compromised, then an adversary could steal the user
token (see above), block the user-RP connection, and submit the token, thus
impersonating the user. Moreover, if the RP does not use https, then the SIP-
issued RSTR will not be encrypted. Assuming that the web browser is not a
secure environment, then it may be possible for another browser extension or
screen scraper to get access to sensitive information disclosed by the plaintext
RSTR and/or the user token. However, the same risks apply when manually
entering credentials (e.g. username-password) into the browser [26].

Finally note that some older browsers (or browsers with scripting disabled)
may not be able to run the integration plug-in, as it was built using JavaScript.
However, most modern browsers support JavaScript (or ECMAscript), and hence
building the prototype in JavaScript is not a major usability obstacle.

7 Related Work

A somewhat similar scheme [27] has previously been proposed to support Card-
Space-Liberty interoperation. However, unlike the scheme proposed here, the
CardSpace-Liberty integration scheme does not support the exchange of identity
attributes and does not operate with https-enabled websites.

A CardSpace-OpenID interoperation scheme has also been proposed [28],
which enables interworking between a CardSpace-enabled RP and an OpenID-
enabled IdP, requiring no changes to the IdP.



Another scheme supporting interoperation between CardSpace and Liberty
has been proposed by Jørstad et al. [29]. In this scheme, the IdP is responsible
for supporting interoperation. The IdP must therefore perform the potentially
onerous task of maintaining two different identity management schemes. This
scheme also requires the user to possess a mobile phone supporting the Short
Message Service (SMS). Moreover, the IdP must always perform the same user
authentication technique, regardless of the identity management system the user
is attempting to use. The IdP simply sends an SMS to the user, and, in order
to be authenticated, the user must confirm receipt of the SMS. This confirma-
tion also serves as an implicit indication of user approval for the IdP to send a
security token to the RP. By contrast, the scheme proposed in this paper sup-
ports interoperation between CardSpace and Shibboleth, does not require use of
a handheld device, and does not enforce a specific authentication method.

Finally, in 2007 Internet2 announced16 plans to develop extensions to Shib-
boleth to support Microsoft’s Windows CardSpace. This included collaboration
with Microsoft in order to add information card support to Shibboleth. However,
unlike the integration scheme proposed in this paper, such work does not seem
to be based on a browser extension running on the client machine. It appears
that the interoperability functionality is performed on Shibboleth IdPs/SPs17,
which is likely to require significant changes to the servers.

8 Conclusions and Future Work

In this paper we have proposed a means of interoperation between two leading
identity systems, namely CardSpace and Shibboleth. CardSpace users are able to
obtain an assertion token from a Shibboleth-enabled identity provider that can
be processed by a CardSpace-enabled relying party. The scheme uses a browser
extension, requires no major changes to identity providers and relying parties,
and does not require any changes to the deployed CardSpace identity selector.

The integration scheme takes advantage of the similarity between the Shib-
boleth and the CardSpace frameworks, and this should help to reduce the effort
required for full system integration. Interoperation between CardSpace and Shib-
boleth may be attractive since both schemes support user authentication as well
as exchanges of user attributes. In addition, they both support SAML tokens.
Moreover, implementation of the scheme does not require technical co-operation
between Microsoft and Internet2.

Planned future work includes investigating the possibility of extending the
CardSpace identity selector to simultaneously support security tokens from a
variety of identity providers, such as OpenID, Liberty, Shibboleth, as well as
CardSpace remote and self-issued identity providers. Possible future work may
also investigate the possibility of extending the proposed integration protocol to
support CardSpace-enabled relying parties that employ security token services.

16 https://lists.internet2.edu/sympa/arc/i2-news/2007-05/msg00009.html
17 https://lists.internet2.edu/sympa/arc/shibboleth-dev/2007-05/msg00021.

html



Acknowledgements

The first author is sponsored by the Diwan of Royal Court, Sultanate of Oman.
The remarks provided by anonymous referees are gratefully acknowledged.

References

1. Berger, A.: Identity Management Systems — Introducing Yourself to the Internet.
VDM Verlag, Saarbrücken (2008)

2. Birch, D.: Digital Identity Management: Technological, Business and Social Impli-
cations. Gower Publishing, Farnham (2007)

3. Todorov, D.: Mechanics of User Identification and Authentication: Fundamentals
of Identity Management. Auerbach Publications, New York, USA (2007)

4. Williamson, G., Yip, D., Sharoni, I., Spaulding, K.: Identity Management: A
Primer. MC Press, Big Sandy, TX (2009)

5. Bertocci, V., Serack, G., Baker, C.: Understanding Windows CardSpace: An In-
troduction to the Concepts and Challenges of Digital Identities. Addison-Wesley,
Reading, Massachusetts (2008)

6. Mercuri, M.: Beginning Information Cards and CardSpace: From Novice to Pro-
fessional. Apress, New York (2007)

7. Al-Sinani, H.S., Mitchell, C.J.: Using CardSpace as a password manager. In
de Leeuw, E., Fischer-Hübner, S., Fritsch, L., eds.: Proceedings of IFIP IDMAN
2010 — 2nd IFIP WG 11.6 Working Conference on Policies and Research in Iden-
tity Management, November 18–19, 2010, Oslo, Norway. Volume 343 of IFIP Ad-
vances in Information and Communication Technology, Springer, Boston, 18–30
(2010)

8. Jones, M.B., McIntosh, M., (editors): Identity Metasystem Interoperability Ver-
sion 1.0 (IMI 1.0). OASIS Standard. (2009)

9. Bajaj, S., et al.: Web Services Policy Framework (WS-Policy). (2006) http:

//download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/

ws-policy-2006-03-01.pdf.
10. Della-Libera, G., et al.: Web Services Security Policy Language (WS-Security

Policy). (2005) http://download.boulder.ibm.com/ibmdl/pub/software/dw/

specs/ws-secpol/ws-secpol.pdf.
11. Ballinger, K., et al.: Web Services Metadata Exchange (WS-MetadataExchange).

(2006) http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/

ws-mex/metadataexchange.pdf.
12. Anderson, S., et al.: Web Services Trust Language (WS-Trust). (2005)

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-trust/

ws-trust.pdf.
13. Nadalin, A., Kaler, C., Monzillo, R., Hallam-Baker, P., (editors): Web Ser-

vices Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS
Standard Specification. (2006) http://docs.oasis-open.org/wss/v1.1/wss-v1.

1-spec-os-SOAPMessageSecurity.pdf.
14. Jones, M.B.: A Guide to Using the Identity Selector Interoperability Profile V1.5

within Web Applications and Browsers. Microsoft Corporation. (2008)
15. Nanda, A., Jones, M.B.: Identity Selector Interoperability Profile V1.5.

Microsoft Corporation. (2008) http://msdn.microsoft.com/en-us/windows/

aa663320.aspx.



16. Microsoft Corporation and Ping Identity Corporation: An Implementer’s Guide
to the Identity Selector Interoperability Profile V1.5. (2008) http://msdn.

microsoft.com/en-us/windows/aa663320.aspx.
17. Cantor, S., (editor): Shibboleth Architecture — Protocols and Profiles. Internet2.

(2005) http://shibboleth.internet2.edu/shibboleth-documents.html.
18. Cantor, S., (editor): Shibboleth Architecture — Conformance Re-

quirements. Internet2. (2005) http://shibboleth.internet2.edu/docs/

internet2-mace-shibboleth-arch-conformance-200509.pdf.
19. Scavo, T., Cantor, S., (editors): Shibboleth Architecture — Techni-

cal Overview. Internet2. (2005) http://shibboleth.internet2.edu/docs/

draft-mace-shibboleth-tech-overview-latest.pdf.
20. Cantor, S., Kemp, J., Philpott, R., Maler, E., (editors): Assertions and Protocols

for the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS. (2005)
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

21. Scavo, T., (editor): SAML V2.0 Holder-of-Key Assertion Profile Version 1.0.
OASIS. (2009) http://www.oasis-open.org/committees/download.php/34962/

sstc-saml2-holder-of-key-cd-03.pdf.
22. Alrodhan, W.A.: Privacy and Practicality of Identity Management Systems.

Technical Report: RHUL–MA–2010–14 (Department of Mathematics, Royal
Holloway, University of London). (2010) http://www.ma.rhul.ac.uk/static/

techrep/2010/RHUL-MA-2010-14.pdf.
23. Dhamija, R., Dusseault, L.: The seven flaws of identity management: Usability

and security challenges. IEEE Security and Privacy 6(2) (2008) 24–29
24. Kristol, D.: HTTP State Management Mechanism. RFC 2045, Internet Engineering

Task Force. (2000) http://tools.ietf.org/html/rfc2965.
25. National Institute of Standards and Technology (NIST): Announcing the Ad-

vanced Encryption Standard (AES), FIPS 197. (2001) http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.
26. Hart, J., Markantonakis, K., Mayes, K.: Website credential storage and two-factor

web authentication with a Java SIM. In Samarati, P., Tunstall, M., Posegga, J.,
Markantonakis, K., Sauveron, D., eds.: Proceedings, Information Security Theory
and Practices. Security and Privacy of Pervasive Systems and Smart Devices, 4th
IFIP WG 11.2 International Workshop, WISTP 2010, Passau, Germany, April 12–
14, 2010. Volume 6033 of Lecture Notes in Computer Science., Springer, Berlin,
Heidelberg, 229–236 (2010)

27. Al-Sinani, H.S., Alrodhan, W.A., Mitchell, C.J.: CardSpace-Liberty integration
for CardSpace users. In Klingenstein, K., Ellison, C.M., eds.: Proceedings of the
9th Symposium on Identity and Trust on the Internet, (IDtrust’10), Gaithersburg,
Maryland, USA, April 13–15, 2010, ACM, New York, NY, 12–25 (2010)

28. Al-Sinani, H.S., Mitchell, C.J.: CardSpace-OpenID integration for CardSpace
users. In: the proceedings of the 26th International Symposium on Computer
and Information Sciences, 26–28 September 2011, London, UK (to appear), to be
published in the Springer Lecture Notes notes on Electrical Engineering (LNEE)
(2011)

29. Jørstad, I., Van Thuan, D., Jønvik, T., Van Thanh, D.: Bridging CardSpace and
Liberty Alliance with SIM authentication. In: Proceedings of the 10th International
Conference on Intelligence in Next Generation Networks (ICIN 07), Adera, Pessac,
8–13 (2007)


