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Abstract

Orientable sequences of order n are infinite periodic sequences with
symbols drawn from a finite alphabet of size k with the property that
any particular subsequence of length n occurs at most once in a period
in either direction. They were introduced in the early 1990s in the
context of possible applications in position sensing. Bounds on the
period of such sequences and a range of methods of construction have
been devised, although apart from very small cases a significant gap
remains between the largest known period for such a sequence and the
best known upper bound. In this paper we first give improved upper
bounds on the period of such sequences. We then give a new general
method of construction for orientable sequences involving subgraphs of
the de Bruijn graph with special properties, and describe two different
approaches for generating such subgraphs. This enables us to construct
orientable sequences with periods meeting the improved upper bounds
when n is 2 or 3, as well as n = 4 and k odd. For 4 ≤ n ≤ 8, in some
cases the sequences produced by the methods described have periods
larger than for any previously known sequences.

1 Introduction

1.1 Orientable sequences

Orientable sequences were introduced in the early 1990s [3, 4, 5] in the con-
text of possible applications in position sensing. An orientable sequence of
order n is an infinite periodic sequence with symbols drawn from a finite
alphabet — typically Zk for some k — with the property that any partic-
ular subsequence of length n, referred to throughout as an n-tuple, occurs
at most once in a period in either direction. That is, if anyone reading the
sequence observes n consecutive symbols, they can deduce both the direc-
tion in which they are reading and their position within one period of the
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sequence. Gabrić and Sawada [8] provide an interesting discussion of further
possible applications as well as their relationship to strings relevant to DNA
computing.

The early work referred to above focussed on the binary case, i.e. where
k = 2; Dai et al. [5] provided both an upper bound on the period for this
case and a method of construction yielding sequences with asymptotically
optimal periods. More recently, Mitchell and Wild [11] showed how the
Lempel homomorphism [10] could be applied to recursively generate binary
orientable sequences with periods a large fraction of the optimal value. In
2024, Gabrić and Sawada [6, 7] described a highly efficient method of gen-
erating binary orientable sequences with the largest known periods.

In 2024, Alhakim et al. [2] studied the general alphabet case, i.e. where
k > 2. They gave an upper bound on the period of orientable sequences
for all n and k, and also described a range of methods of construction using
the Alhakim and Akinwande generalisation of the Lempel homomorphism
to arbitrary finite alphabets [1]. Since then a range of construction methods
have been proposed [8, 12, 13]; of particular interest is the method of Gabrić
and Sawada [8], who showed how to construct sequences with asymptotically
optimal period for any n and k > 2 using a cycle-joining approach.

In this paper we first give new upper bounds on the period of an orientable
sequence, which improve on the previous bounds for n ≥ 3. We also describe
a novel general approach to the construction of orientable sequences for any
k and n. This approach involves showing, using graph-theoretic arguments,
that a subset of n-tuples with special properties can always be ‘joined’ to
create an orientable sequence. Two methods for generating sets of n-tuples
with the appropriate set of properties are described. The orientable se-
quences obtained have optimal periods for n = 2, n = 3 and n = 4 when k is
odd. For 4 ≤ n ≤ 8, for some values of k the sequences generated have longer
period than any previously known sequences, although sequences generated
by the method of Gabrić and Sawada [8] have the largest known period for
larger values of n.

1.2 Basic definitions

In this paper we consider periodic sequences (si) with elements from Zk for
some k, which we refer to as k-ary. For a sequence S = (si) and n ≥ 1
we write sn(i) = (si, si+1, . . . , si+n−1), i.e. a string of n consecutive symbols
occurring in the sequence at positions i, i + 1, . . . , i + n − 1. We refer to
such strings as n-tuples. Since we are interested in tuples occurring either
forwards or backwards in a sequence, we also introduce the notion of a
reversed tuple, so that if u = (u0, u1, . . . , un−1) is a k-ary n-tuple then
uR = (un−1, un−2, . . . , u0) is its reverse. We are also interested in negating
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all the elements of a tuple, and hence if u = (u0, u1, . . . , un−1) is a k-ary
n-tuple, we write −u for (−u0,−u1, . . . ,−un−1).

Definition 1.1 ([2]). A k-ary n-window sequence S = (si) is a periodic
sequence of elements from Zk (k > 1, n > 1) with the property that no
n-tuple appears more than once in a period of the sequence, i.e. with the
property that if sn(i) = sn(j) for some i, j, then i ≡ j (mod m) where m is
the period of the sequence.

A k-ary de Bruijn sequence of order n is then simply an n-window sequence
in which every k-ary n-tuple appears once in a period, i.e. an n-window
sequence of maximal period.

Following Alhakim et al. [2] we also introduce the de Bruijn digraph. For
positive integers n and k greater than one, let Zn

k be the set of all kn vectors
of length n with entries from the group Zk of residues modulo k. The order
n de Bruijn digraph, Bk(n), is a directed graph with Zn

k as its vertex set in
which, for any two vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1),
the pair (x,y) is an edge if and only if yi = xi+1 for every i (0 ≤ i < n− 1).
We label such an edge with the (n+ 1)-tuple (x0, x1, . . . , xn−1, yn−1).

Note that we have defined two ways of specifying an edge in Bk(n), namely
as either a pair of vertices (a,b), where a,b are k-ary n-tuples, or as a single
k-ary (n+ 1)-tuple x. Note that, in this case, the (n+ 1)-tuple xR denotes
the same edge as (bR,aR).

It is straightforward to verify that there is a correspondence between a k-ary
de Bruijn sequence of order n and a directed Eulerian circuit in Bk(n− 1),
in which consecutive edges in the circuit correspond to consecutive n-tuples
in the sequence.

Definition 1.2 ([2]). A k-ary n-window sequence S = (si) is said to be an
orientable sequence of order n, an OSk(n), if sn(i) ̸= sn(j)

R, for any i, j.

1.3 This paper

The remainder of this paper is structured as follows. We start, in Section 2,
by developing new upper bounds on the period of an orientable sequence.
In Section 3 we describe our novel general method of construction, which
involves regarding n-tuples as edges in the de Bruijn graph of order n − 1.
A first method of constructing a set of n-tuples with the desired properties
is presented in Section 4. A second method, involving use of the Lempel
homomorphism from the de Bruijn graph of order n to the de Bruijn graph of
order n−1, is given in Section 5. For both constructions simple examples are
given, and the periods of the orientable sequences generated are tabulated
for small values of n and k. This leads naturally to Section 6, where a table
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is given of the largest known periods for orientable sequences for n and k at
most 8. As discussed briefly in the concluding section, Section 7, this table
reveals that for n > 3 there remains a significant gap between the largest
known period for an orientable sequence and the existing upper bound.

Preliminary versions of some of the results in this paper were presented at
Sequences 2025 (London, February 2025) and the 5th Pythagorean Confer-
ence (Kalamata, June 2025).

2 New upper bounds on the period of an orientable
sequence

2.1 Preliminaries

We start by giving some simple definitions and elementary results relating
to these definitions.

Definition 2.1. Suppose n ≥ 1 and k ≥ 2. If a = (a0, a1, . . . , an−1) is a
k-ary n-tuple, then a is said to be uniform if and only if ai = aj for every
i, j ∈ {0, 1, . . . , n− 1}.

Definition 2.2. Suppose n ≥ 1 and k ≥ 2. If a = (a0, a1, . . . , an−1) is a
k-ary n-tuple, then a is said to be alternating if and only if there exist c0
and c1 such that a2i = c0 and a2i+1 = c1 for every i such that i ≥ 0 and
2i+ 1 ≤ n− 1 and a is not uniform.

Definition 2.3. Suppose n ≥ 1 and k ≥ 2. If a = (a0, a1, . . . , an−1) is a
k-ary n-tuple, then a is said to be symmetric if and only if ai = an−1−i for
every i ∈ {0, 1, . . . , n− 1}. An n-tuple which is not symmetric is referred to
as asymmetric.

We define two key subgraphs of the de Bruijn digraph.

Definition 2.4. Suppose k ≥ 2 and n ≥ 1. Let B∗
k(n) be the subgraph of

the de Bruijn digraph Bk(n) with all the edges corresponding to symmetric
(n+ 1)-tuples removed.

Remark 2.5. Since there are k⌈(n+1)/2⌉ symmetric (n + 1)-tuples, B∗
k(n)

contains kn+1 − k⌈(n+1)/2⌉ edges.

Definition 2.6. Suppose k ≥ 2 and n ≥ 2. Suppose S is an OSk(n). Let
B(S, n) be the subgraph of Bk(n− 1) with vertices the vertices of Bk(n− 1)
and with edges corresponding to those n-tuples which appear in either S or
SR. We refer to B(S, n) as the sequence-subgraph.

The following simple lemma is key.
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Lemma 2.7. Suppose k ≥ 2 and n ≥ 2. Suppose S is an OSk(n) of period
m. Then:

i) B(S, n) contains 2m edges;

ii) every vertex of B(S, n) has in-degree equal to its out-degree; and

iii) B(S, n) is a subgraph of B∗
k(n− 1).

Proof. i) Since S has periodm, there are a total of 2m n-tuples appearing
in S and SR. They are all distinct since S is an OSk(n).

ii) S and SR correspond to edge-disjoint Eulerian circuits in B(S, n), and
the result follows.

iii) This is immediate since if S is an OSk(n), then neither S nor SR can
contain any symmetric n-tuples.

The bound we give in this section derives from a careful analysis of the
sequence-subgraph B(S, n) of an OSk(n). In particular we consider the
impact on the possible number of edges in this subgraph arising from the
constraints we give in Sections 2.2 and 2.3 below. Any upper bound on the
number of edges in B(S, n) immediately gives rise to a bound on the period
of an orientable sequence from Lemma 2.7(i).

2.2 In-out-degree constraints on the sequence-subgraph

In this section and the next we consider properties of the sequence-subgraph
for S that can be derived from the assumption that S is an OSk(n). We
first need the following definition.

Definition 2.8. Suppose k ≥ 2 and n ≥ 3. An n-tuple (a0, a1, . . . , an−1) is
said to be left-semi-symmetric if ai = an−i−2, 0 ≤ i ≤ n − 2. Equivalently,
(a0, a1, . . . , an−1) is left-semi-symmetric if and only if (a0, a1, . . . , an−2) is
symmetric.

Analogously, an n-tuple (a0, a1, . . . , an−1) is said to be right-semi-symmetric
if ai = an−i, 1 ≤ i ≤ n − 1. Equivalently, (a0, a1, . . . , an−1) is right-semi-
symmetric if and only if (a1, a2, . . . , an−1) is symmetric.

We can now state the following.

Lemma 2.9. Suppose k ≥ 2 and n ≥ 3. A vertex in B∗
k(n) has:

i) in-degree k − 1 if and only if it its label is left-semi-symmetric; other-
wise it has in-degree k;
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ii) out-degree k − 1 if and only if it its label is right-semi-symmetric;
otherwise it has out-degree k.

Proof. For (i), the in-degree of every vertex in Bk(n) is k. However, if (and
only if) an inbound edge corresponds to a symmetric (n+1)-tuple, then this
edge will not be in B∗

k(n). Such an event can occur if and only if the vertex
is labelled with a left-semi-symmetric n-tuple, and there can only be one
such symmetric inbound edge. The result follows. The proof of (ii) follows
using an exactly analogous argument.

This immediately tells us that some edges in B∗
k(n − 1) cannot occur in

B(S, n) if S is a OSk(n). However, before describing exactly when this
occurs, we first need the following simple result.

Lemma 2.10. Suppose k ≥ 2 and n ≥ 4. Suppose the (n − 1)-tuple
(a0, a1, . . . , an−2) is both left-semi-symmetric and right-semi-symmetric. Then

i) if n is even then (a0, a1, . . . , an−2) is uniform;

ii) if n is odd then (a0, a1, . . . , an−2) is either uniform or alternating.

Proof. Suppose the (n−1)-tuple (a0, a1, . . . , an−2) is both left-semi-symmetric
and right-semi-symmetric. Then ai = an−i−3, 0 ≤ i ≤ n − 3, and ai =
an−i−1, 1 ≤ i ≤ n− 2. Since n ≥ 4 this implies that there exist constants c0
and c1 such that c0 = a2i, 0 ≤ 2i ≤ n−2, and c1 = a2j+1, 0 ≤ 2j+1 ≤ n−2.
Hence (ii) follows.

If n is even then we have a(n−2)/2 = a(n−2)/2−1, and hence c0 = c1 and (i)
follows.

The following result follows immediately from Lemmas 2.9 and 2.10.

Corollary 2.11. Suppose k ≥ 2 and n ≥ 4. Consider a vertex in B∗
k(n− 1)

with label a = (a0, a1, . . . , an−2), where a is non-uniform.

i) if n is even and a is left-semi-symmetric, then its in-degree is k − 1
and its out-degree is k;

i) if n is even and a is right-semi-symmetric, then its out-degree is k− 1
and its in-degree is k;

iii) if n is odd and a is left-semi-symmetric and non-alternating, then its
in-degree is k − 1 and its out-degree is k;

iv) if n is odd and a is right-semi-symmetric and non-alternating, then
its out-degree is k − 1 and its in-degree is k;
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The above corollary immediately tells us that certain edges in B∗
k(n − 1)

cannot occur in B(S, n), as follows.

Corollary 2.12. Suppose k ≥ 2 and n ≥ 4 and S is an OSk(n). Then

i) if n is even, for every vertex in B∗
k(n − 1) corresponding to a non-

uniform left-semi-symmetric (n − 1)-tuple (a0, a1, . . . , an−2), there is
an edge (a0, a1, . . . , an−2, x) in B∗

k(n − 1), for some x, that is not in
B(S, n);

ii) if n is even, for every vertex in B∗
k(n − 1) corresponding to a non-

uniform right-semi-symmetric (n− 1)-tuple (a0, a1, . . . , an−2), there is
an edge (y, a0, a1, . . . , an−2) in B∗

k(n − 1), for some y, that is not in
B(S, n);

iii) if n is odd, for every vertex in B∗
k(n − 1) corresponding to a non-

uniform non-alternating left-semi-symmetric (n−1)-tuple (a0, a1, . . . , an−2),
there is an edge (a0, a1, . . . , an−2, x) in B∗

k(n− 1), for some x, that is
not in B(S, n);

iv) if n is odd, for every vertex in B∗
k(n − 1) corresponding to a non-

uniform non-alternating right-semi-symmetric (n−1)-tuple (a0, a1, . . . , an−2),
there is an edge (y, a0, a1, . . . , an−2) in B∗

k(n− 1), for some y, that is
not in B(S, n).

Proof. The result follows immediately from Lemma 2.7(ii) and Corollary 2.11.

2.3 Degree-parity constraints on the sequence-subgraph

We first give the following simple lemma.

Lemma 2.13. Suppose k ≥ 2 and n ≥ 2. If an n-tuple is both left-semi-
symmetric and symmetric then it is uniform. Similarly, if an n-tuple is both
right-semi-symmetric and symmetric then it is uniform.

Proof. Let a = (a0, . . . , an−1) be an n-tuple which is both left-semi-symmetric
and symmetric. Then ai = an−2−i = an−1−i for i = 0, 1, . . . , n − 2. It is
immediate that aj = aj+1 for j = 0, 1, . . . , n− 2 and thus a is uniform. The
second claim follows by an analogous argument.

The following lemma is key.

Lemma 2.14. Suppose k ≥ 2 and n ≥ 2. Suppose S is an OSk(n) and
consider a vertex in B(S, n) with label a = (a0, a1, . . . , an−2), where a is
symmetric. Then a has even in-degree and even out-degree in B(S, n).
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Proof. Both S and SR correspond to an Eulerian circuit in B(S, n), and
these circuits are edge disjoint and cover all the edges of B(S, n). If a is
symmetric then both circuits pass through this vertex equally many times.
It follows that a has even in-degree and even out-degree in B(S, n).

We also need the following.

Lemma 2.15. Suppose k ≥ 2 and n ≥ 2, and consider a vertex in B∗
k(n−1)

with label a = (a0, a1, . . . , an−2). Then:

i) if k is even and a is uniform than the vertex has odd in-degree in
B∗

k(n− 1) (and out-degree);

ii) if k is odd and a is symmetric and non-uniform then the vertex has
odd in-degree in B∗

k(n− 1) (and out-degree).

Proof. i) Since a is uniform it is also left-semi-symmetric and right-semi-
symmetric, and hence by Lemma 2.9 it has in-degree and out-degree
k − 1. Since k is even the result follows.

ii) Since a is symmetric and non-uniform it cannot be left-semi-symmetric
or right-semi-symmetric by Lemma 2.13. Hence a has in-degree and
out-degree k and the result follows since k is odd.

Combining Lemmas 2.14 and 2.15 immediately gives the following important
result.

Corollary 2.16. Suppose k ≥ 2 and n ≥ 2 and S is an OSk(n). Then

i) if k is even, for every vertex in B∗
k(n− 1) corresponding to a uniform

(n − 1)-tuple (a, a, ..., a), there is an edge (a, a, ..., a, x) in B∗
k(n − 1),

for some x, that is not in B(S, n).

ii) if k is even, for every vertex in B∗
k(n− 1) corresponding to a uniform

(n − 1)-tuple (a, a, ..., a), there is an edge (y, a, a, ..., a) in B∗
k(n − 1),

for some y, that is not in B(S, n).

iii) if k is odd, for every vertex in B∗
k(n− 1) corresponding to a symmet-

ric and non-uniform (n − 1)-tuple (a0, a1, . . . , an−2), there is an edge
(a0, a1, . . . , an−2, x) in B∗

k(n− 1), for some x, that is not in B(S, n).

iv) if k is odd, for every vertex in B∗
k(n− 1) corresponding to a symmet-

ric and non-uniform (n − 1)-tuple (a0, a1, . . . , an−2), there is an edge
(y, a0, a1, . . . , an−2) in B∗

k(n− 1), for some y, that is not in B(S, n).

Remark 2.17. Observe that, for n = 2 and k odd, Lemma 2.15 and Corol-
lary 2.16 are trivially true since there are no symmetric non-uniform (n−1)-
tuples.
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2.4 Constraint interactions

The results above indicate in what circumstances certain edges in B∗
k(n−1)

cannot occur in B(S, n) if S is an OSk(n). In particular we have consid-
ered cases where one of the incoming edges to a vertex corresponding to a
symmetric or right-semi-symmetric (n − 1)-tuple cannot occur in B(S, n),
and also where one of the outgoing edges from a vertex corresponding to
a symmetric or left-semi-symmetric (n − 1)-tuple cannot occur in B(S, n).
While we would like to add together the numbers of eliminated edges for
each case, we need to ensure we avoid ‘double counting’.

More specifically we need to consider when an edge can be outgoing from a
symmetric or left-semi-symmetric (n−1)-tuple and also incoming to a sym-
metric or right-semi-symmetric (n− 1)-tuple. This motivates the following
result.

Lemma 2.18. Suppose k ≥ 2. Suppose a = (a0, a1, . . . , an−2) and b =
(a1, a2, . . . , an−1) are k-ary (n−1)-tuples, connected by the edge (a0, a1, . . . , an−1).

i) If n ≥ 3, a is symmetric and b is symmetric then either a and b are
both uniform or n is even and a and b are both alternating.

ii) If n ≥ 5, a is symmetric and b is right-semi-symmetric then there
exist cj, 0 ≤ j ≤ 2, such that a3i+j = cj, for every i and 0 ≤ j ≤ 2.
Moreover if n ≡ 0 (mod 3) then c0 = c1, if n ≡ 1 (mod 3) then
c0 = c2, and if n ≡ 2 (mod 3) then c1 = c2.

iii) If n ≥ 5, a is left-semi-symmetric and b is symmetric then there exist
cj, 0 ≤ j ≤ 2, such that a3i+j = cj, for every i and 0 ≤ j ≤ 2.
Moreover if n ≡ 0 (mod 3) then c1 = c2, if n ≡ 1 (mod 3) then
c0 = c1, and if n ≡ 2 (mod 3) then c0 = c2.

iv) If n ≥ 5, a is left-semi-symmetric and b is right-semi-symmetric then
there exist cj, 0 ≤ j ≤ 3, such that a4i+j = cj, for every i and 0 ≤
j ≤ 3. Moreover if n ≡ 0 (mod 4) then c0 = c1 and c2 = c3, if n ≡ 1
(mod 4) then c0 = c2, if n ≡ 2 (mod 4) then c0 = c3 and c1 = c2, and
if n ≡ 3 (mod 4) then c1 = c3.

Proof. i) By symmetry of a and b, respectively, ai = an−2−i and ai+1 =
an−1−i for every i, 0 ≤ i ≤ n − 2. Hence there exist c0 and c1 such
that a2i = c0 and a2i+1 = c1 for every i. If n is odd then c0 = c1 and
the result follows.

ii) By symmetry of a, ai = an−2−i for every i (0 ≤ i ≤ n − 2), and by
right-semi-symmetry of b, aj = an+1−j for every j (2 ≤ j ≤ n − 1).
Hence ai = ai+3, 0 ≤ i < n − 3. Now, since n ≥ 5, a3i+j = cj ,
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for every i and 0 ≤ j ≤ 2 for some cj . From symmetry of a, we
have c0 = a0 = an−2; if n ≡ 0 (mod 3) then an−2 = c1, i.e. c0 = c1.
From right-semi-symmetry of b, c2 = a2 = an−1; if n ≡ 1 (mod 3)
then an−1 = c0, and so c0 = c2, and finally if n ≡ 2 (mod 3) then
an−1 = c1, i.e. c1 = c2.

iii) By left-semi-symmetry of a, ai = an−3−i for every i (0 ≤ i ≤ n − 3),
and by symmetry of b, aj = an−j for every j (1 ≤ j ≤ n − 1). Using
exactly the same argument as for (ii), a3i+j = cj , for every i and
0 ≤ j ≤ 2 for some cj . By the symmetry of b, c1 = a1 = an−1; if
n ≡ 0 (mod 3) then an−1 = c2 (and so c1 = c2), and if n ≡ 1 (mod 3)
then an−1 = c0 and so c1 = c0. Finally, by left-semi-symmetry of a,
c0 = a0 = an−3, and hence if n ≡ 2 (mod 3) then an−3 = c2 and so
c0 = c2.

iv) By left-semi-symmetry of a, ai = an−3−i for every i (0 ≤ i ≤ n−3) and
by right-semi-symmetry of b, aj = an+1−j for every j (2 ≤ j ≤ n− 1).
Hence ai = ai+4, 0 ≤ i ≤ n − 3. Thus, since n ≥ 5, a4i+j = cj ,
for every i and 0 ≤ j ≤ 3 for some cj . From left-semi-symmetry
of a, c0 = a0 = an−3; if n ≡ 0 (mod 4) then an−3 = c1 and so
c0 = c1, if n ≡ 1 (mod 4) then an−3 = c2 and so c0 = c2, and if
n ≡ 2 (mod 4) then an−3 = c3 and so c0 = c3. Further, we have
c1 = a1 = an−4; if n ≡ 3 (mod 4) then an−4 = c3 and so c1 = c3.
From right-semi-symmetry of b, we have c2 = a2 = an−1; if n ≡ 0
(mod 4) then an−1 = c3 (and so c2 = c3), and finally if n ≡ 2 (mod 4)
then an−1 = c1, i.e. c1 = c2.

2.5 Counting special types of n-tuple

The following simple enumerative result will be of use below.

Lemma 2.19. Suppose n ≥ 3 and k ≥ 2. Then

i) the number of symmetric k-ary n-tuples is k⌈n/2⌉;

ii) the number of uniform k-ary n-tuples is k.

iii) the number of symmetric non-uniform k-ary n-tuples is k⌈n/2⌉ − k;

iv) the number of asymmetric k-ary n-tuples is kn − k⌈n/2⌉;

v) the number of alternating k-ary n-tuples is k(k − 1);

vi) the number of non-uniform non-alternating symmetric k-ary n-tuples
is k(n+1)/2 − k2 if n is odd, and kn/2 − k if n is even;
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vii) the number of left-semi-symmetric k-ary n-tuples is k⌈(n+1)/2⌉;

viii) the number of non-uniform left-semi-symmetric k-ary n-tuples is k⌈(n+1)/2⌉−
k;

ix) the number of non-uniform non-alternating left-semi-symmetric k-ary
n-tuples is k(n+2)/2 − k2 if n is even, and k(n+1)/2 − k if n is odd.

Proof. Result (i) follows since there are k choices for each of the first ⌈n/2⌉
positions of an n-tuple. (ii) is immediate, and (iii) is simply the difference
between (i) and (ii). (iv) follows from (i) and the trivial observation that
there are kn possible k-ary n-tuples. (v) is immediate by observing that
there are k choices for c0 and k − 1 choices for c1, given that the n-tuple is
non-uniform.

For (vi), if n is odd then every alternating n-tuple is symmetric, and hence
the number of non-uniform non-alternating symmetric n-tuples is the num-
ber of non-uniform symmetric n-tuples less the number of alternating n-
tuples (which are non-uniform by definition), i.e. the difference between (iii)
and (v). If n is even, then an alternating n-tuple cannot be symmetric, and
hence the number of non-uniform non-alternating symmetric n-tuples is the
number of non-uniform symmetric n-tuples, i.e. (iii).

(vii) follows from the fact that the first ⌈(n − 1)/2⌉ positions of the n-
tuple and the last position can be chosen freely, and the other positions are
determined. (viii) is simply the difference between (vii) and (ii), observing
that a uniform n-tuple is left-semi-symmetric.

Finally, for (ix), if n is even then every alternating n-tuple is left-semi-
symmetric, and hence the number of non-uniform non-alternating left-semi-
symmetric n-tuples is the number of non-uniform left-semi-symmetric n-
tuples less the number of alternating n-tuples (which are non-uniform by
definition), i.e. the difference between (viii) and (v). If n is odd, then an
alternating n-tuple cannot be left-semi-symmetric, and hence the number of
non-uniform non-alternating left-semi-symmetric n-tuples is the number of
non-uniform left-semi-symmetric n-tuples, i.e. (viii).

2.6 Developing the bound

Before establishing our new period bound, we first outline the proof strategy.
This will then enable the proof of the bound to be described more simply.

In Sections 2.2 and 2.3 we described two main ways in which we could
establish that certain edges in B∗

k(n − 1) cannot occur in B(S, n) when S
is an OSk(n). In particular we showed that in two cases incoming edges to
certain categories of vertex cannot occur, and also in two cases that outgoing
edges from certain categories of vertex cannot occur.

11



This suggests a straightforward strategy for bounding the period of an
OSk(n), namely that the period is at most half the maximum cardinal-
ity of B(S, n) (by Lemma 2.7(i)). In turn |B(S, n)| is bounded above by the
number of edges in B∗

k(n − 1), i.e. kn − k⌈n/2⌉ by Lemma 2.19(iv), less the
number of edges in B∗

k(n − 1) that cannot occur in B(S, n) as specified in
Corollaries 2.12 and 2.16.

This strategy is complicated by the fact that, as noted in Section 2.4, there
is a danger of ‘double counting’ certain excluded edges. For example, Corol-
lary 2.12 asserts that certain outgoing edges from a left-semi-symmetric
(n − 1)-tuple cannot occur, and Corollary 2.16 asserts that certain edges
incoming to a uniform or symmetric (n− 1) tuple cannot occur. These two
sets of excluded edges may overlap, and hence we need to take this into
account; Lemma 2.18 is of key importance in this respect.

The following notation is intended to simplify the arguments. Let Uin and
Uout be the sets of incoming and outgoing edges excluded by Corollary 2.12,
and Pin and Pout be the sets of incoming and outgoing edges excluded by
Corollary 2.16.

The above discussion leads to the following key lemma.

Lemma 2.20. If k ≥ 2 and S is an OSk(n) then:

|B(S, n)| ≤



k2 − k − |Pout|, if n = 2

k3 − k2 − |Pout| − |Pin|+ |Pout ∩ Pin|, if n = 3

k4 − k2 − |Uout| − |Pout|, if n = 4

kn − k⌈n/2⌉ − |Uout| − |Uin| − |Pout| − |Pin|
+ |Uout ∩ Pin|+ |Pout ∩ Uin|
+ |Uout ∩ Uin|+ |Pout ∩ Pin|, if n > 4.

where |X ∩ Y | denotes the maximum possible cardinality for such a set.

Proof. The argument for n = 2 is immediate. A similar comment applies
when n = 3. The n = 4 and n ≥ 5 cases follow from observing that
Uin ∩ Pin = Uout ∩ Pout = ∅ because a symmetric (n − 1)-tuple can neither
be non-uniform left-semi-symmetric nor non-uniform right-semi-symmetric,
from Lemma 2.13.

Remark 2.21. The reason to restrict the sets considered when n ≤ 4 is
because certain sets are empty or might be equal for small n. Moreover
Corollary 2.12 only applies for n ≥ 4.

2.7 The bound

We can now give the bound.

12



Theorem 2.22. Suppose k ≥ 2 and m is the period of an OSk(n).

i) If n = 2 then:

m ≤

{
k2−k
2 , if k is odd

k2−2k
2 , if k is even

ii) If n = 3 then:

m ≤

{
k3−k2

2 , if k is odd
k3−k2−2k

2 , if k is even

iii) If n = 4 then:

m ≤

{
k4−3k2+2k

2 , if k is odd
k4−2k2

2 , if k is even

iv) If n > 4 then:

m ≤


kn−3k(n+1)/2−2k(n−1)/2+k3+3k2

2 , if n and k are odd
kn−3k(n+1)/2+k3+k2−2k

2 , if n is odd and k is even
kn−5kn/2+4k2

2 , if n is even and k is odd
kn−3kn/2+k2−k

2 , if n and k are even

Proof. The proof builds on, and uses the notation of, Lemma 2.20.

i) n = 2. If k is odd then Pout = ∅ by Corollary 2.16(iii), since there
are no symmetric non-uniform 1-tuples. If k is even then, by Corol-
lary 2.16(i), |Pout| = k, since there are k uniform 1-tuples by Lemma 2.19(ii).
The result follows from Lemma 2.20.

ii) n = 3. If k is odd then, by Corollary 2.16(iii),(iv), |Pin| = |Pout|
equals the number of symmetric non-uniform 2-tuples, i.e. zero by
Lemma 2.19(iii).

If k is even then, by Corollary 2.16(i),(ii), |Pin| = |Pout| equals the
number of uniform 2-tuples, i.e. k by Lemma 2.19(ii). Moreover, Pin∩
Pout = ∅, since an edge can only be outgoing from a uniform (n− 1)-
tuple and incoming to a uniform (n − 1)-tuple if it corresponds to a
uniform n-tuple, and such an edge cannot occur in B∗

k(n − 1). The
result follows from Lemma 2.20.

iii) n = 4. By Corollary 2.12(i), |Uout| equals the number of non-uniform
left-semi-symmetric 3-tuples, i.e. k2 − k by Lemma 2.19(viii). If k is
odd then, by Corollary 2.16 (iii), |Pout| equals the number of symmetric
non-uniform 3-tuples, i.e. k2−k by Lemma 2.19(iii). If k is even then,
by Corollary 2.16 (i), |Pout| equals the number of uniform 3-tuples, i.e.
k by Lemma 2.19(ii). The result follows from Lemma 2.20.

13



iv)a) n > 4; n odd. By Corollary 2.12(iii),(iv), |Uout| = |Uin| equals the
number of non-uniform non-alternating left-semi-symmetric (n − 1)-
tuples, i.e. k(n+1)/2−k2 by Lemma 2.19(ix). Also, by Lemma 2.18(iv),
|Uout∩Uin| = k3−k2 since if, in the statement of the lemma, we choose
c1 ̸= c3 if n ≡ 1 (mod 4), and c0 ̸= c2 if n ≡ 3 (mod 4), then a and b
are non-uniform and non-alternating and there are k2(k−1) = k3−k2

possibilities for the values ci.

If k is odd then, by Corollary 2.16 (iii),(iv), |Pout| = |Pin| equals the
number of symmetric non-uniform (n− 1)-tuples, i.e. k(n−1)/2 − k by
Lemma 2.19(iii).
By Lemma 2.18(ii),(iii), |Uout∩Pin| = |Pout∩Uin| = k(k−1) (removing
the case where the ci are all equal).
By Lemma 2.18(i), Pout ∩ Pin = ∅.
If k is even then, by Corollary 2.16(i),(ii), |Pout| = |Pin| equals the
number of uniform (n− 1)-tuples, i.e. k by Lemma 2.19(ii).
By Corollary 2.16(i),(ii), Pout and Pin only contain edges out-going/in-
going from/to uniform (n − 1)-tuples, and by Corollary 2.12(iii),(iv)
Uout and Uin only contain edges that are out-going/in-going from/to
non-uniform (n− 1)-tuples, and hence |Uout ∩ Pin| = |Pout ∩ Uin| = ∅.
By Corollary 2.16(i),(ii), Pout and Pin only contain edges out-going/in-
going from/to uniform (n− 1)-tuples, and hence an edge in Pout ∩Pin

must be uniform, i.e. Pout ∩ Pin = ∅.
The result follows from Lemma 2.20.

iv)b) n > 4; n even. By Corollary 2.12(i),(ii), |Uout| = |Uin| equals the
number of non-uniform left-semi-symmetric (n−1)-tuples, i.e. kn/2−k
by Lemma 2.19(viii). Additionally, by Lemma 2.18(iv), |Uout ∩ Uin| =
k(k − 1), by choosing c0 and c2 to be distinct.

If k is odd then, by Corollary 2.16(iii),(iv), |Pout| = |Pin| equals the
number of symmetric non-uniform (n − 1)-tuples, i.e. kn/2 − k by
Lemma 2.19(iii).
By Lemma 2.18(ii),(iii), |Uout ∩ Pin| = |Pout ∩ Uin| = k(k − 1), by en-
suring that c0, c1 and c2 are not all equal.
By Lemma 2.18(i), |Pout ∩ Pin| = k(k − 1), i.e. the number of non-
uniform alternating (n− 1)-tuples.

If k is even then, by Corollary 2.16(i),(ii), |Pout = |Pin| equals the
number of uniform (n− 1)-tuples, i.e. k by Lemma 2.19(i).
By Corollary 2.16(i),(ii), Pout and Pin only contain edges out-going/in-
going from/to uniform (n−1)-tuples, and by Corollary 2.12(i),(ii) Uout

and Uin only contain edges that are out-going/in-going from/to non-
uniform (n− 1)-tuples, and hence |Uout ∩ Pin| = |Pout ∩ Uin| = ∅.
Finally, it is immediate that Pout ∩ Pin = ∅.
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The result follows from Lemma 2.20.

2.8 Numerical results

The bounds resulting from Theorem 2.22 are tabulated for small k and n
in Table 1. The numbers given in brackets are the bounds derived from [2,
Theorem 4.11], and are provided for comparison purposes.

Table 1: Bounds — new and (old) — on the period of an OSk(n)
n k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

2 0 3 4 10 12 21 24
(0) (3) (4) (10) (12) (21) (24)

3 0 9 20 50 84 147 216
(1) (9) (22) (50) (87) (147) (220)

4 4 30 112 280 612 1134 1984
(5) (33) (118) (290) (627) (1155) (2012)

5 8 99 452 1450 3684 8085 15896
(11) (105) (478) (1490) (3777) (8211) (16124)

6 21 315 1958 7550 23019 58065 130332
(27) (336) (2014) (7680) (23217) (58464) (130812)

7 44 972 7844 38100 138144 408072 1042712
(55) (1032) (8062) (38640) (139317) (410256) (1046524)

8 105 3096 32390 193800 837879 2876496 8382492
(119) (3189) (32638) (194630) (839157) (2879835) (8386556)

9 212 9423 129572 971350 5027304 20149437 67059992
(239) (9645) (130558) (974390) (5034957) (20166027) (67092476)

3 Eulerian cycles in the de Bruijn digraph

3.1 Overview

Inspired by the well-known correspondence between k-ary de Bruijn se-
quences of order n and Eulerian cycles in the order n − 1 de Bruijn graph
Bk(n − 1) (see, for example, [10]), we next describe a correspondence be-
tween orientable sequences of order n and Eulerian cycles in subgraphs of
the de Bruijn graph Bk(n−1), where these subgraphs satisfy certain special
properties. If we can then construct subgraphs with these special properties
which admit Eulerian cycles then we have a simple method of generating
orientable sequences.
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3.2 A correspondence

First observe that the set of directed edges in any subgraph of Bk(n) cor-
responds to a subset of the set Zn+1

k , i.e. a subset of all possible k-ary
(n+ 1)-tuples. We need the following definitions.

The following is standard terminology.

Definition 3.1. An Eulerian digraph is a connected digraph for which every
vertex has in-degree equal to out-degree.

The name derives from the fact that there exists an Eulerian circuit, i.e. a
circuit visiting every edge, in a digraph if and only if the digraph is Eulerian
— see, for example, Corollary 6.1 of Gibbons [9]. Moreover, there are sim-
ple and efficient algorithms for finding Eulerian circuits — see for example
Gibbons [9, Figure 6.5].

We next define a special class of digraphs of importance for this paper.

Definition 3.2. Suppose T is a subgraph of the de Bruijn digraph Bk(n)
for some n ≥ 2 and k ≥ 2. T is said to be antisymmetric if the following
property holds.

Suppose x = (x0, x1, . . . , xn−1),y = (y0, y1, . . . , yn−1) ∈ Zn
k , i.e. they are

vertices in T . Then if (x,y) is an edge in T , then (yR,xR) is not an edge
in T .

Definition 3.3. Suppose S is a periodic k-ary n-window sequence of period
m for some n ≥ 2, k ≥ 2 and m ≥ 1. Then the edge-graph En(S) of S is
defined to be the subgraph of Bk(n − 1) whose directed edges correspond to
n-tuples appearing in a period of S, i.e. with edge set

{sn(i) : 0 ≤ i ≤ m− 1}

and whose vertices are those vertices of Bk(n−1) that have in-degree at least
one.

We can now state a key lemma.

Lemma 3.4. Suppose S is a k-ary periodic n-window sequence. Then S is
an OSk(n) if and only if En(S) is antisymmetric in Bk(n− 1).

Proof. Suppose S is an OSk(n). Then, by definition, sn(i) ̸= sn(j)
R, for

any i, j. Hence, again by definition, this means that a ̸= bR for any edges
a,b in En(S). Hence En(S) is antisymmetric.

Now suppose En(S) is antisymmetric, and hence a ̸= bR for any edges a,b
in En(S). Thus, sn(i) ̸= sn(j)

R, for any i, j, and so S is an OSk(n).
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This enables us to give our main result.

Theorem 3.5. If S is an OSk(n) of period m then En(S) is an antisym-
metric Eulerian subgraph of Bk(n− 1) containing m edges. Moreover, if T
is an antisymmetric Eulerian subgraph of Bk(n−1) with m edges, then there
exists an OSk(n) S of period m such that En(S) = T .

Proof. Suppose S = (si) is an OSk(n) of period m. Then, by Lemma 3.4,
En(S) is antisymmetric in Bk(n−1). Also, trivially, En(S) containsm edges.
Finally, if (x1, x2, . . . , xn−1) is a vertex in En(S), then the incoming edges all
have labels of the form (x, x1, x2, . . . , xn−1) for some x, and correspond to
sn(i) for some i. Then the edge corresponding to sn(i+ 1) will have a label
of the form (x1, x2, . . . , xn−1, y) for some y, and so for every incoming edge
there is an outgoing edge, and vice versa. Moreover, by the definition of an
orientable sequence, distinct values of x correspond to distinct values of y.
Hence the in-degree of every vertex is the same as the out-degree. Finally,
note that En(S) is connected since we only include vertices in En(S) with
in-degree greater than zero, and the sequence S defines a path incorporating
every vertex in En(S).

Now suppose T is an antisymmetric Eulerian subgraph of Bk(n − 1) with
m edges. Then there exists an Eulerian circuit of length m in Bk(n − 1).
This circuit corresponds to a sequence S with period m in the natural way.
S is clearly an n-window sequence since the circuit visits every edge exactly
once, and each edge corresponds to a unique n-tuple. It is straightforward
to verify that En(S) = T . Finally, S is an OSk(n) from Lemma 3.4.

Remark 3.6. In general, for any antisymmetric Eulerian subgraph of Bk(n−
1) T , there will exist many orientable sequences with edge-graph T , since
there may be many different Eulerian circuits in T , each corresponding to a
different sequence.

3.3 Implications

Theorem 3.5 means that if we can construct an antisymmetric Eulerian
subgraph of Bk(n − 1) with m edges for ‘large’ m (i.e. with m close to
the maximum possible), then we will immediately have a set of orientable
sequences with period close to the maximum.

As a result, in the remainder of this paper we consider ways of constructing
sets of edges in Bk(n − 1) that define an antisymmetric Eulerian subgraph
of Bk(n− 1).
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4 A simple construction

4.1 The subgraph

We next give a very simple way of establishing an antisymmetric Eulerian
subgraph of Bk(n− 1).

Definition 4.1. If n ≥ 2 and k ≥ 3 let Ak(n) be the subgraph of Bk(n− 1)
with edges corresponding to the n-tuples (a0, a1, . . . , an−1), where ai ∈ Zk,
for which an−1 − a0 ∈ {1, 2, . . . ⌊(k − 1)/2⌋}.

It is simple to establish how many edges there are in Ak(n).

Lemma 4.2. Suppose n ≥ 2 and k ≥ 3. Then if E is the set of edges in
Ak(n)

|E| = kn−1

⌊
k − 1

2

⌋
.

Proof. Suppose (a0, a1, . . . , an−1) is an edge in Ak(n). Then there are k
choices for each ai, 0 ≤ i ≤ n− 2. Finally, there are ⌊(k − 1)/2⌋ choices for
an−1 and the result follows.

The following two results demonstrate the importance of Ak(n).

Lemma 4.3. Suppose n ≥ 2 and k ≥ 3. Ak(n) is antisymmetric in the de
Bruijn digraph Bk(n− 1).

Proof. If s = (s0, s1, . . . , sn−1) is an edge in Ak(n), then by definition sn−1−
s0 ∈ {1, 2, . . . ⌊(k− 1)/2⌋}. Hence s0 − sn−1 ∈ {n− 1, n− 2, . . . ⌊(k+2)/2⌋},
so that sR = (sn−1, sn−2, . . . , s0) is not an edge in Ak(n), since

{1, 2, . . . ⌊(k − 1)/2⌋} ∩ {k − 1, k − 2, . . . ⌊(k + 2)/2⌋} = ∅

and the result follows.

We can now give the following.

Theorem 4.4. Suppose n ≥ 2 and k ≥ 5. Ak(n) is an antisymmetric
Eulerian subgraph of Bk(n− 1) with kn−1

⌊
k−1
2

⌋
edges.

Proof. From Lemmas 4.3 and 4.2 we need only show that Ak(n) is connected
and that every vertex has in-degree equal to its out-degree.

Consider any vertex u = (u1, u2, . . . , un−1) in Ak(n). An incoming edge

(s, u1, u2, . . . , un−1)
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must satisfy un−1 − s ∈ {1, 2, . . . ⌊(k − 1)/2⌋}. Similarly an outgoing edge

(u1, u2, . . . , un−1, t)

must satisfy t − u1 ∈ {1, 2, . . . ⌊(k − 1)/2⌋}. Regardless of the values of u1
and un−1 there are clearly ⌊(k − 1)/2⌋ possible values for both s and t, i.e.
the in-degree of every vertex is the same as its out-degree; in both cases it
will equal ⌊(k − 1)/2⌋.
To show that Ak(n) is connected observe that there will always exist a path
from

(u1, u2, . . . , un−1) to (u1, u2, . . . , uj−1, uj + 1, uj+1, . . . , un−1)

for any j. This follows since, if k ≥ 5, there is an edge from

(u1, u2, . . . , un−1) to (u2, u3, . . . , un−1, u1 + 1)

and also an edge from

(u1, u2, . . . , un−1) to (u2, u3, . . . , un−1, u1 + 2).

This enables a path of length n to be constructed from (u1, u2, . . . , un−1) to
(u1+1, u2+1, . . . , uj−1+1, uj+2, uj+1+1, . . . , un−1+1) for any j, and then a
path of length 2n to (u1+2, u2+2, . . . , uj−1+2, uj+3, uj+1+2, . . . , un−1+2),
etc., to get a path to (u1+k, u2+k, . . . , uj−1+k, uj+k+1, uj+1+k, . . . , un−1+
k) — which is equal to (u1, u2, . . . , uj−1, uj + 1, uj+1, . . . , un−1).

Hence, inductively, there exists a path from (u1, u2, . . . , un−1) to any vertex
(v1, v2, . . . , vn−1).

The result follows.

Remark 4.5. We need to assume k ≥ 5 since, unfortunately, Ak(n) is not
connected if k < 5. If k = 3 and n = 3 we have:

00 → 01 → 11 → 12 → 22 → 20 → 00

and
02 → 21 → 10 → 02

i.e. circuits of length 6 and 3. Similarly if k = 3 and n = 4 we obtain three
circuits each of length 9. Similar problems arise for k = 4, because for k = 3
and k = 4 the in-degree and out-degree of every vertex in An(k) is only 1.

Combining Theorems 4.4 and 3.5 we immediately obtain the following.

Corollary 4.6. If n ≥ 2 and k ≥ 5 then there exists an OSk(n) with period

kn−1

⌊
k − 1

2

⌋
.
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Example 4.7. As an example of Corollary 4.6, consider the case k = 5 and
n = 3. The 50 3-tuples in A5(3) are listed in Table 2, and a period of an
OS5(3) containing these 50 3-tuples is:

[00123 40112 23344 00213 24304 21431 03142 03204 10224 41133].

Table 2: 5-ary 3-tuples in A5(3)

001 002 102 103 203 204 304 300 400 401
011 012 112 113 213 214 314 310 410 411
021 022 122 123 223 224 324 320 420 421
031 032 132 133 233 234 334 330 430 431
041 042 142 143 243 244 344 340 440 441

Table 3 tabulates the periods of the generated sequences for small k and n.
In each case the upper bound for the period (from Theorem 2.22) is given
in brackets.

Table 3: OSq(n) periods (and bounds)

n k = 5 k = 6 k = 7 k = 8 k = 9

2 10 12 21 24 36
(10) (12) (21) (24) (36)

3 50 72 147 192 324
(50) (84) (147) (216) (324)

4 250 432 1029 1536 2916
(280) (612) (1134) (1984) (3168)

5 1250 2592 7203 12288 26244
(1450) (3684) (8085) (15896) (28836)

6 6250 15552 50421 98304 236196
(7550) (23019) (58065) (130332) (264060)

7 31250 93312 352947 786432 2125764
(38100) (138144) (408072) (1042712) (2381400)

8 156250 559872 2470629 6291456 19131876
(193800) (837879) (2876496) (8382492) (21507120)

Comparison of the bound in Theorem 2.22 with Corollary 4.6 shows that
the sequences have optimal period for n = 2 and n = 3 if k is odd.
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4.2 Variants

There are a number of other antisymmetric Eulerian subgraphs of Bk(n−1)
with the same number of edges as Ak(n). We briefly mention two such
examples, where in both cases we assume k ≥ 5 and n ≥ 2.

� For odd k, define Ck(n), where (a0, a1, . . . , an−1) is an edge in Ck(n)
if and only if an−1 − a0 is odd. It is immediate to see that Ck(n) is
antisymmetric since if (a0, a1, . . . , an−1) is an edge then a0 − an−1 is
even, since k is odd. It can be shown that Ck(n) is Eulerian using a
similar argument to that for An(k).

� A second variant constrains more than the first and last elements of an
n-tuple. Suppose t ≤ n/2. Let Ak(n, t) be the subgraph of Bk(n− 1)
with edges equal to the following set of k-ary n-tuples{

(a0, a1, . . . , an−1) :
n−1∑

i=n−t

ai −
t−1∑
i=0

ai ∈ {1, 2, . . . ⌊(k − 1)/2⌋}

}
.

If the n-tuple s is an element of Ak(n, t), then sR ̸∈ Ak(n, t), i.e. it
is antisymmetric. It again follows that it is Eulerian using a similar
argument to that for Ak(n).

There are, no doubt, further variants that could be devised.

5 A construction using the Lempel homomorphism

We next show how, using the inverse of the Lempel homomorphism, a sub-
graph of Bk(n− 1) with certain special properties can be used to construct
an antisymmetric Eulerian subgraph of Bk(n).

5.1 Preliminaries

We first need to define the Lempel homomorphism D, that maps from Bk(n)
to Bk(n− 1). We follow the definition of Alhakim and Akinwande [1], who
generalised the original Lempel definition [10], that only applied for k = 2,
to alphabets of arbitrary size.

Definition 5.1. Define the function Dβ : Bk(n) → Bk(n − 1) as follows,
where β ∈ Z∗

k. If a = (a0, a1, . . . , an−1) ∈ Zn
k then

Dβ(a) = (β(a1 − a0), β(a2 − a1), . . . β(an−1 − an−2)).

Clearly Dβ is onto if and only if gcd(β, k) = 1. We also have the following.
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Lemma 5.2 (Alhakim and Akinwande, [1]). Every vertex in Bk(n− 1) has
exactly k images in Bk(n) under D−1

β if and only if β is coprime to k.

In the remainder of this paper we are particularly interested in the case
β = 1, and we simply write D for D1.

5.2 Using the inverse homomorphism

The following definition is key to the construction.

Definition 5.3. Suppose T is a subgraph of the de Bruijn digraph Bk(n−1)
for some n ≥ 2 and k ≥ 2. T is said to be antinegasymmetric if the following
property holds.

Suppose x = (x0, x1, . . . , xn−2),y = (y0, y1, . . . , yn−2) ∈ Zn−1
k , i.e. they are

vertices in T . Then if (x,y) is an edge in T , then (−yR,−xR) is not an
edge in T .

Lemma 5.4. Suppose n ≥ 2 and k ≥ 3. If T is an antinegasymmetric
subgraph of the de Bruijn digraph Bk(n−1) with edge set E, then D−1(E), of
cardinality k|E|, is the set of edges for an antisymmetric subgraph of Bk(n),
which, abusing our notation slightly, we refer to as D−1(T ). Moreover, if
every vertex of T has in-degree equal to its out-degree, then the same apples
to D−1(T ).

Proof. Suppose D−1(T ) is not antisymmetric, i.e. there exist (n+ 1)-tuples
a = (a0, a1, . . . , an),b = (b0, b1, . . . , bn) ∈ D−1(E) such that a = bR, i.e.
ai = bn−i, for 0 ≤ i ≤ n.

Suppose also that D(a) = c and D(b) = d, where c = (c0, c1, . . . , cn−1),d =
(d0, d1, . . . , dn−1) ∈ E. Hence ci = ai+1 − ai and di = bi+1 − bi for 0 ≤ i ≤
n− 1. Since ai = bn−i for 0 ≤ i ≤ n, for any j (0 ≤ j ≤ n− 1) we have:

cj = aj+1 − aj = bn−(j+1) − bn−j = −(bn−j − b(n−1)−j) = −d(n−1)−j .

Hence c = −dR, but this contradicts the assumption that T is antinegasym-
metric.

Every edge in E corresponds to k edges in D−1(E), and hence |D−1(E)| =
k|E|.
It remains to show that every vertex of D−1(T ) has in-degree equal to its
out-degree. Suppose x = (x1, x2, . . . , xn) is a vertex of D−1(T ). For every
edge a ∈ D−1(T ) that ends in x, there is a corresponding edge D(a) ∈ T
that ends in D(x). That is, the in-degree of x in D−1(T ) will equal the
in-degree of D(x) in T . An exactly similar result holds for out-degree. Since
every vertex of T has in-degree equal to its out-degree, the same holds for
D−1(T ).
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Example 5.5. Observe that E = {(1, 0), (1, 1), (1, 2), (0, 1), (2, 1)} is the set
of edges for an antinegasymmetric subgraph of the de Bruijn digraph B4(1).
Observe that the edges of T are all the 4-ary 2-tuples containing a 1 and not
containing a 3 = −1; this clearly guarantees antinegasymmetry. It is also
simple to see that the in-degree of every vertex is the same as its out-degree.

Then D−1(E) is equal to

{(a, a+1, a+1), (a, a+1, a+2), (a, a+1, a+3), (a, a, a+1), (a, a+2, a+3) : a ∈ Z4}

which is a set of 20 edges, which by Lemma 5.4 forms an antisymmetric
subgraph of the de Bruijn digraph B4(2) with in-degree equal to out-degree for
every vertex. It is also simple to check that the graph is connected (ignoring
vertices with in-degree zero), and hence is Eulerian. As a result Eulerian
circuits exist, each of which corresponds to an OS4(3) of period 20. One
such orientable sequence is the OS4(3) [00112012230130231233] of period
20 found by Gabrić and Sawada [8] via an exhaustive search.

5.3 Constructing antinegasymmetric subgraphs

We next demonstrate how to construct antinegasymmetric subgraphs of the
de Bruijn digraph Bk(n − 1) for every n ≥ 2. This builds on the work
described in [13].

Definition 5.6 ([13]). Suppose u = (u0, u1, . . . , un−1) is an n-tuple of ele-
ments of Zk (k > 1). Define the function f : Zk → Q as follows: for any
u ∈ Zk treat u as an integer in the range [0, k− 1] and set f(u) = u if u ̸= 0
and f(u) = k/2 if u = 0. Then the pseudoweight of u is defined to be the
sum

w∗(u) =
n−1∑
i=0

f(ui)

where the sum is computed in Q.

As a simple example for k = 3, the 4-tuple (0, 1, 1, 2) has pseudoweight
1.5 + 1 + 1 + 2 = 5.5, since f(0) = 3

2 .

The following result is closely related to [13, Theorem 3.14].

Theorem 5.7. Suppose n ≥ 2 and k ≥ 3. If E is the set of all k-ary n-
tuples with pseudoweight less than nk/2, then E is the set of edges for an
antinegasymmetric subgraph of the de Bruijn digraph Bk(n− 1). Moreover,
every vertex in this subgraph has in-degree equal to its out-degree.

Proof. Consider any n-tuple u = (u0, u1, . . . , un−1) ∈ E. By definition we
know that w∗(u) < nq/2. We claim that w∗(−uR) = nk − w∗(u). This
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follows immediately from the definition of f since f(−ui) = k − f(ui) for
every possible value of ui.

Hence, since w∗(u) < nk/2, it follows immediately that w∗(−uR) > nk/2.
Thus the n-tuples in E are all distinct from the n-tuples in−ER = {−uR : u ∈
E}. Hence E is the set of edges for an antinegasymmetric subgraph of the
de Bruijn digraph Bk(n− 1).

It remains to show that the in-degree of every vertex is equal to its out-
degree. Consider any vertex u = (u0, u1, . . . , un−2) of Bk(n− 1). An incom-
ing edge

(s, u0, u1, . . . , un−2)

in E must satisfy s+ w∗(u) < nk/2. Similarly an outgoing edge

(u0, u1, . . . , un−2, t)

in E must satisfy t + w∗(u) < nk/2. That is, the in-degree of every vertex
is the same as its out-degree.

It is clearly of interest to know the cardinality of the edge set E of Theo-
rem 5.7. Again following [13] we make the following definition.

Definition 5.8. If k ≥ 2 and n ≥ 1, let rk,n,s denote the number of k-ary
n-tuples with pseudoweight exactly s, where rk,n,s = 0 by definition if s < n
or s > n(k − 1).

We immediately have the following corollary of Theorem 5.7.

Corollary 5.9. If n ≥ 2 and k ≥ 3, then E as defined in Theorem 5.7
is the set of edges for an antinegasymmetric subgraph of the de Bruijn di-

graph Bk(n− 1) containing
kn−rk,n,nk/2

2 edges and where every vertex in this
subgraph has in-degree equal to its out-degree.

A discussion of the properties of rk,n,s and a table of small values is given
in [13, Section 3.4].

From Lemma 5.4, this means that D−1(E), where E is as defined in Theo-
rem 5.7, is the set of edges for an antisymmetric subgraph of Bk(n), where
every vertex has in-degree equal to its out-degree. It would be ideal if we
could also show that D−1(E) is the set of edges for a connected subgraph of
Bk(n) and then we would know that D−1(E) is the set of edges for an Eu-
lerian antisymmetric subgraph of Bk(n). We could then apply Theorem 3.5
to obtain an OSk(n+ 1) of period |D−1(E)| = k|E|.
Thus, showing that the subgraph is connected, after removal of any vertices
with in-degree and out-degree zero, is key. This is our next focus.
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5.4 Establishing connectivity

We next establish the key result that if E is as in Theorem 5.7 then D−1(E)
is the set of edges for a connected subgraph of Bk(n). We first need the
following simple lemma.

Lemma 5.10. Suppose n ≥ 2 and k ≥ 3. Suppose E is as in Theorem 5.7.
If a = (a0, a1, . . . , an−1) is a vertex in the subgraph of Bk(n) for which
D−1(E) is the set of edges, then a has in-degree and out-degree zero if and
only if

w∗(D(a)) = w∗((a1 − a0, a2 − a1, . . . , an−1 − an−2)) ≥
nk

2
− 1.

Proof. Suppose (x, a0, a1, . . . , an−1) is an incoming edge to the vertex a, for
some x. Then D((x, a0, a1, . . . , an−1)) must be an edge in the subgraph of
Bk(n − 1) for which E is the set of edges. Now D((x, a0, a1, . . . , an−1)) =
(a0−x, a1−a0, a2−a1, . . . , an−1−an−2) which must be an edge in E. Thus,
by definition of E:

w∗((a0 − x, a1 − a0, a2 − a1, . . . , an−1 − an−2)) < nk/2

It is straightforward to see that

w∗((a0 − x, a1 − a0, a2 − a1, . . . , an−1 − an−2)) =

w∗((a0 − x)) + w∗((a1 − a0, a2 − a1, . . . , an−1 − an−2)).

and w∗((a0 − x)) ≥ 1; hence

w∗((a1 − a0, a2 − a1, . . . , an−1 − an−2)) < nk/2− 1.

That is, a has in-degree and out-degree zero if

w∗((a1 − a0, a2 − a1, . . . , an−1 − an−2)) ≥ nk/2− 1.

To show that a has non-zero in-degree and out-degree if

w∗((a1 − a0, a2 − a1, . . . , an−1 − an−2)) < nk/2− 1

it suffices to point out that the edge D((a0 − 1, a0, a1, . . . , an−1)) will have
pseudoweight less than 1+(nk/2−1) = nk/2, and hence (a0−1, a0, a1, . . . , an−1)
is an edge in E. The result follows.

We can now establish the main result.

Theorem 5.11. Suppose n ≥ 2 and k ≥ 3. If E is defined as in Theorem 5.7
then D−1(E) is the set of edges of a connected subgraph of Bk(n).
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Proof. By definition, the edges of E consist of k-ary n-tuples with pseu-
doweight less than kn/2. Suppose a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1)
are vertices in the subgraph of Bk(n) for which D−1(E) is the set of edges,
satisfying w∗(D(a)) < nk/2−1 and w∗(D(b)) < nk/2−1. We need to show
that there is a path from a to b in this subgraph.

The proof relies on three simple observations.

� Observation A. Suppose c = (c0, c1, . . . , cn−1) is any vertex in the
subgraph with non-zero in-degree, i.e. w∗(D(c)) < nk/2−1. Consider
the (n+ 1)-tuple c+ = (c0, c1, . . . , cn−1, cn−1 + 1). Now, by definition,
c+ is an element ofD−1(E) if and only if w∗(D(c+)) < nk/2. However,
trivially,

w∗(D(c+)) = w∗(D(c)) + 1 < (nk/2− 1) + 1 = nk/2.

Hence c+ is always an element of D−1(E), and so there is always an
edge from c = (c0, c1, . . . , cn−1) to (c1, c2, . . . , cn−1, cn−1 + 1), as long
as c has non-zero out-degree.

� Observation B. Suppose d is an arbitrary element of Zk, and consider
the (n + 1)-tuple d = (d, d + 1, . . . , d + n − 1, d + n). It is simple to
verify that

w∗(D(d)) = n.

Now, since k ≥ 3, w∗(D(d)) < nk/2, and hence d is an element of
D−1(E). Thus there is always an edge from (d, d+1, . . . , d+n− 1) to
(d+1, d+2, . . . , d+n) for any d, and hence there is always a directed
path from (d, d+1, . . . , d+ n− 1) to (e, e+1, . . . , e+ n− 1) for any d
and e.

� Observation C. Suppose c = (c0, c1, . . . , cn−1) is any vertex in the
subgraph with non-zero in-degree, i.e. w∗(D(c)) < nk/2−1. Consider
the (n+ 1)-tuple c− = (c0 − 1, c0, c1, . . . , cn−1). As previously

w∗(D(c−)) = w∗(D(c)) + 1 < (nk/2− 1) + 1 = nk/2.

Hence there is always an edge from (c0 − 1, c0, c1, . . . , cn−2) to (c =
(c0, c1, . . . , cn−1), as long as c has non-zero in-degree.

The proof now follows in three stages.

� Applying Observation A n−1 times, there exists a directed path from
a to the vertex (an−1, an−1 + 1, . . . , an−1 + (n− 1)).

� From Observation B, there exists a directed path from (an−1, an−1 +
1, . . . , an−1 + n− 1) to (b0 − n+ 1, b0 − n+ 2, . . . , b0).
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� Applying Observation C n−1 times, there exists a directed path from
(b0 − n+ 1, b0 − n+ 2, . . . , b0) to b = (b0, b1, . . . , bn−1).

That is, there exists a directed path from a to b, and the result follows.

Combining Corollary 5.9 with Theorems 3.5 and 5.11 gives the following.

Corollary 5.12. If k ≥ 3 and n ≥ 2 there exists an OSk(n+1) with period

k
kn − rk,n,nk/2

2
.

Remark 5.13. We have defined a set of edges forming an Eulerian subgraph
of Bk(n), and every Eulerian circuit in this subgraph will yield an OSk(n+
1). This approach will thus yield many different such sequences, since there
will be many possible Eulerian circuits.

Example 5.14. As an example of Corollary 5.12, consider the case k = 3
and n = 3. The ten 3-ary 3-tuples having pseudoweight less than 4.5 are
listed in Table 4 — these form the set E. The set D−1(E) consists of the 30
4-tuples given in Table 5, where the 4-tuples are grouped in threes according
to the element of E of which they are pre-images under D. Finally, a period
of an OS5(3) containing the 4-tuples in D−1(E) is:

[01201 21202 01012 22011 20011 12200]

.

Table 4: E: 3-ary 3-tuples with pseudoweight less than 4.5

111
011 101 110
001 010 100
112 121 211

Table 5: D−1(E): 3-ary 4-tuples

0120 1201 2012
0012 1120 2201 0112 1220 2001 0122 1200 2011
0001 1112 2220 0011 1122 2200 0111 1222 2000
0121 1202 2010 0101 1212 2020 0201 1012 2120
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The periods of the sequences of Corollary 5.12 for small k and n are given
in Table 6, along with the bound on the period from Theorem 2.22. In the
cases n = 3 and n = 4 (k odd), the periods of the sequences of Corollary 5.12
meet the bound of Theorem 2.22.

Table 6: Periods of the constructed OSk(n) (and bounds)
n k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

3 9 20 50 84 147 216
(9) (20) (50) (84) (147) (216)

4 30 88 280 534 1134 1800
(30) (112) (280) (612) (1134) (1984)

5 93 372 1390 3300 7763 14680
(999) (452) (1450) (3684) (8085) (15896)

6 288 1544 7160 20172 56056 118864
(315) (1958) (7550) (23019) (58065) (130332)

7 882 6344 35810 122646 388626 959160
(972) (7844) (38100) (138144) (408072) (1042712)

8 2691 25904 181100 743370 2757937 7724552
(3096) (32390) (193800) (837879) (2876496) (8382492)

6 Relation to other work

It is of interest to consider how the construction methods described here
affect efforts to find orientable sequences with the largest possible period.
The current state of knowledge for small n and k > 2 in this direction is
summarised in Table 7, where the upper bound from Theorem 2.22 is given
in brackets beneath the largest known period.

The following observations can be made about this table. The bound val-
ues (in brackets) follow from Theorem 2.22. The values in bold represent
maximal values.

� n = 2: The fact that there exists an OSk(2) with period meeting
the bound follows from [2, Theorem 5.4] (for k prime), and from [8,
Theorem 2] and [13, Lemma 2.2] for general k.

� n = 3: The existence of an OSk(3) meeting the period bound is due to
[2, Example 5.1] for k = 3, [8, Section 1] for k = 5 (from an exhaustive
search), and for general k from this paper.

� n = 4: The fact that the maximum period of an OS3(4) is 30 is again
due to [8, Section 1], and the existence of an OSk(4) meeting the
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Table 7: Largest known periods for an OSk(n) (and bounds)
n k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

2 3 4 10 12 21 24
(3) (4) (10) (12) (21) (24)

3 9 20 50 84 147 216
(9) (20) (50) (84) (147) (216)

4 30 88 280 534 1134 1800
(30) (112) (280) (612) (1134) (1984)

5 93 372 1390 3360 7763 15120
(99) (452) (1450) (3684) (8085) (15896)

6 288 1608 7160 21150 56056 124320
(315) (1958) (7550) (23019) (58065) (130332)

7 882 7308 36890 135450 403389 1034264
(972) (7844) (38100) (138144) (408072) (1042712)

8 2691 30300 187980 821940 2844408 8315496
(3096) (32390) (193800) (837879) (2876496) (8382492)

bound for general odd k is from this paper. All values for 4 ≤ k ≤ 8
follow from this paper.

� n = 5: The OS3(5), OS4(5), OS5(5) and OS7(5), respectively of
periods 93, 372, 1390 and 7763, come from this paper. The values for
k = 6 and k = 8 come from [8, Theorem 11] from cycle-joining.

� n ≥ 6: TheOS3(6), OS5(6), OS3(7) andOS3(8), of periods 288, 7160,
882 and 2691 respectively, come from this paper. All other values in
the table come from [8, Theorem 11].

7 Conclusions

We have presented tighter upper bounds on the period of an orientable
sequence and a general approach for constructing orientable sequences for
any n ≥ 2 and any k ≥ 3. For n ≤ 3, and n = 4 when k is odd, the results
show that the bound on the period is tight. The construction method gives
sequences of slightly lesser period than the approach of Gabrić and Sawada
[8, Theorem 11] for larger n, although all the sequences constructed here
have period greater than (k − 1)/k of the maximum for odd k, and greater
than (k − 2)/k of the maximum for even k.

Table 7 reveals that further work is required to close the gap between the
known largest period and the best existing upper bound for k even and
n = 4 as well as for all k when n > 4.
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