PenTest2.0: Advancing Ethical Hacking with
GenAlI-Driven Privilege Escalation

Haitham S. Al-Sinani'*3®, Chris J. Mitchell2®, and Abdulaziz S. Al-Hosni'

! Diwan of Royal Court, Muscat, Oman. [hsssinani, ashosni]@diwan.gov.om
2 Royal Holloway, University of London, Egham, UK. C.Mitchell@rhul.ac.uk
3 German University of Technology in Oman, Muscat, Oman.
Haitham.AlSinani@gutech.edu.om

Abstract. Ethical hacking remains time-consuming, difficult to scale,
and prone to human error because it depends on experts manually exe-
cuting complex command sequences. PenTest++, an Al-augmented sys-
tem supporting key penetration-testing workflows, was proposed to ad-
dress this, but it lacks privilege escalation (PrivEsc). We present here
PenTest2.0, a major evolution enabling multi-turn, automated priv-
ilege escalation powered by Large Language Model reasoning. It adds
Retrieval-Augmented Generation, Chain-of-Thought prompting, PenTest
Task Trees, and optional human hints to improve reasoning, context re-
tention, and adaptability. We describe its design and a proof-of-concept
implementation, and show it can perform adaptive privilege escalation.
We also highlight limitations related to prompt sensitivity, execution con-
text, and semantic drift. PenTest 2.0 offers a practical step toward scal-
able Al-driven penetration testing, although further research is needed
to ensure reliable and safe behaviour in security-critical settings.

Keywords: Al - Ethical Hacking - PrivEsc - GenAl - ChatGPT - LLM

1 Introduction

Ethical hacking, or penetration testing [16] (PenTesting), is labour-intensive,
error-prone, and hard to scale because it relies on experts manually crafting com-
mands, interpreting outputs, and adapting strategies. Our earlier PenTest++ [4]
reduced this burden by integrating GenAl into reconnaissance, scanning, enu-
meration, exploitation, and reporting, but lacked automated Privilege Escalation
(PrivEsc) — a crucial post-exploitation step — and did not support Retrieval-
Augmented Generation (RAG), Chain-of-Thought (CoT) prompting, PenTest
Task Trees (PTTs), or human-injected hints. To overcome these shortcomings,
we propose PenTest?2. 0, that performs multi-turn, GenAlI-driven PrivEsc and
optionally incorporates RAG, CoT, PTTs, and human hints, while logging com-
mands, reasoning traces, cost metrics, and diagnostics for detailed analysis.
CoT prompting |18] encourages the LLM to express intermediate reasoning
before producing an action. RAG grounds LLM outputs by injecting concise,
context-relevant facts from external sources, thereby reducing hallucination and

https://orcid.org/0009-0005-0453-3335
https://orcid.org/0000-0002-6118-0055

2 H. Al-Sinani & et. al

aligning suggestions with practised techniques [14]. Originally adopted in Pen-
TestGPT [9], the PTT preserves task data across turns, addressing context loss.

We address these research questions (RQ). RQ1: How effectively can GenAl
autonomously accomplish PrivEsc with human supervision? RQ2: To what ex-
tent do RAG, CoT, PTTs, and human hints improve the effectiveness and trace-
ability of GenAl-driven PrivEsc? RQ3: What practical limitations arise when
applying LLMs to command-based PrivEsc tasks in realistic environments? We
make five contributions: C1: demonstrating the feasibility of automating PrivEsc
with user oversight; C2: a GenAl-powered, multi-turn PrivEsc prototype able to
reason, generate, execute, and adapt commands, released as open—sourceﬂ C3:
integrating optional RAG, CoT prompting, PTTs, and human hints for deeper
reasoning; C4: comprehensive evaluation on a realistic Linux target, capturing
autonomous behaviour and failure modes; and C5: a critical review of strengths,
limitations, and future research directions for GenAl-assisted PenTesting.

The paper is organised as follows. Sections [2| and [3| describe the system’s
operation and design rationale, respectively. Section [4] outlines the prototype,
while Sections[f]and [f] present an evaluation and cost analysis. Section [7]discusses
broader implications, and Section [§ reviews related research. Finally, Section [J]
concludes the paper and presents future work directions.

2 PenTest2.0 Operation & Design Choices

Since PenTest2.0 extends PenTest++ [4], we summarise the PenTest++
workflow showing where PenTest?2.0 integrates. After automated reconnais-
sance to discover live hosts and gather preliminary network and service infor-
mation, PenTest++ performs scanning and enumeration (e.g., using nmap
and gobuster) to identify ports, services, and configuration details relevant to
attack planning. During exploitation, it proposes tailored payloads and com-
mand sequences targeting discovered vulnerabilities, with user approval through-
out. Once a foothold is achieved, PenTest 2. 0 takes over post-exploitation to
handle PrivEsc. Finally, PenTest++ compiles logs, findings, and recommenda-
tions into structured reports, using GenAl to enhance clarity and readability.
We now describe how PenTest2.0 operates (see Figs. [1] and [2).

1. Prior Assumption: PenTest2.0 presumes prior access to the target sys-
tem, usually via a low-privileged shell from a preceding exploitation stage.
This corresponds to standard post-exploitation settings in PenTesting re-
search, and focuses the system’s scope on PrivEsc.

2. System Context Collection via Probing: Prior to calling the LLM,
our system automatically runs a predefined set of reconnaissance commands
on the target to obtain information about the system environment, run-
time state, and operating context. Typical commands include id, whoami,
hostname, uname -a, sudo -1, env,and 1ls —-la /tmp. Their outputs

4https://github.com/DrHaitham/PenTest2.0

https://github.com/DrHaitham/PenTest2.0

Introducing PenTest2.0 3

are aggregated, condensed, and used to form the initial GenAl prompt, al-
lowing the LLM to start reasoning from a precise and cost-aware snapshot
of the target.

3. Prompt Generation: Based on the collected system state, PenTest2.0
generates the initial prompt by inserting relevant details into a predefined
template. The resulting prompt is then sent to the LLM to start the first
reasoning turn, supplying the context required to propose an appropriate
PrivEsc strategy.

4. Execution—Feedback Cycle: After receiving a command suggestion from
the LLM, PenTest2.0 runs it on the target host through SSH and records
the resulting output. If root access is obtained, the procedure stops. Other-
wise, PenTest?2 .0 prepares a new prompt by combining a condensed form
of the previous prompt with the most recent output and submits it to the
LLM for the next reasoning step. This cycle repeats until either root privi-
leges are gained or the predefined turn limit is reached.

5. User Oversight: While the system is designed to support full automated
operation, PenTest2.0 requires user supervision at critical checkpoints.
Before any prompt is submitted to the LLM, the user inspects the complete
prompt content, token count, and estimated API cost. In the same way, every
command proposed by the LLM must receive explicit user approval prior to
execution on the target system. This two-step approval approach promotes
responsible and safe use, reduces the risk of unintended system impact or
unnecessary expenditure, and ensures that the user retains final authority
over all actions.

6. Optional Extensions: PenTest?2 .0 provides a set of optional mechanisms
intended to improve reasoning quality and reduce the time required to ob-
tain root access: RAG — available in offline and online forms — to supply
relevant knowledge to LLM prompts; CoT Prompting to support stepwise
intermediate reasoning; PTTs to maintain persistent records of subtasks,
executed commands, and observations across turns; and Human Hints to
steer the LLM away from ineffective behaviours or towards more promising
strategies (see Fig. . These optional components can be toggled on or off
as needed; if activated, they are incorporated dynamically during execution.

7. Runtime Logging and Reporting: Throughout execution, PenTest2.0
records each prompt, issued command, resulting output, token consump-
tion, and root verification step. At the end of a run — either after success or
upon reaching the turn limit — the system produces structured reports sum-
marising decisions, costs, and results, enabling reproducibility, traceability,
and effective debugging.

3 Design Choices

We now describe the rationale behind the design choices of PenTest2. 0.
Modular Architecture: PenTest?2. 0 adopts a modular, component-based

architecture, facilitating extensibility, debugging, and customisation. Core mod-

ules such as command_executor.py, l1lm_connector.py, ptt_manager.py

4 H. Al-Sinani & et. al

and shell_root_detection.py encapsulate distinct responsibilities. This sep-
aration of concerns ensures that the system can be maintained, extended, or
debugged without introducing regressions elsewhere.

Dynamic Prompting: PenTest2.0 builds LLM prompts dynamically
from small, reusable blocks (system facts, recent outputs, task history, and op-
tional modules) rather than a single monolithic prompt. At runtime the user
can toggle CoT, RAG, PTT and human hints (e.g. via CLI flags), enabling the
system to emit either a minimal, cost-efficient prompt containing only essential
context or a richer prompt that embeds reasoning chains and retrieved knowl-
edge when deeper analysis is needed. This composable approach permits precise
prompt tailoring without restarting the system, reduces token usage in routine
runs, and allows rapid escalation to intelligence-heavy modes if needed.

The base prompt in PenTest2.0 defines the operating context, rules of
engagement, and input/output structure for the LLM.
Base prompt (excerpt): You assist with Linux privilege escalation. From a
low-privileged account (USERNAME), propose a safe next command each turn, using
the system summary and output, to reach root within MAX_TURNS ...
Rules: (1) never repeat a successful command; (2) retry corrected versions of

syntax-error failures; (3) avoid destructive commands (e.g. rm -rf =*) ...
JSON Output:

{ "command_non_interactive": "string, for automated execution (no \$, \#,)",
"command_interactive": "string, interactive version if possible, else empty",
"system_summary": "string, max 10 very short bullet points",
"command_history": "string (max 15 lines, summarised cleanly)",

"rationale": "string, 1{2 sentences explaining why this command was chosen" }

The system incrementally rebuilds the prompt at each turn by injecting a
concise summary of the current system state and recent outputs, preserving
essential context while bounding token usage. This turn-level, iterative injection
lets the LLM refine strategy from real execution feedback, avoids prompt bloat,

and yields more reliable decision-making than single-shot prompts.

Enforced Reasoning: PenTest 2. 0 requires the LLM to output a brief ra-
tionale with every command, encouraging reflective reasoning rather than shal-
low pattern matching. By explaining why a command fits the current system
state and prior outputs, the model reduces repeated failures, exposes its logic
for user inspection, and leaves a lightweight audit trail. This improves decision
quality, helps detect drift or hallucinations, and simplifies debugging, making
rationale generation a compact but essential mechanism for reliable PrivEsc.

CoT prompting: Instead of proposing an action directly, the LLM is in-
structed to examine the environment summary, reflect on the previous command
and its output, and then determine the next step. This supports more deliber-
ate behaviour, reduces unnecessary repetition, and improves transparency dur-
ing multi-turn PrivEsc attempts. We implement CoT by adding a short direc-
tive to the prompt that encourages step-wise reasoning. We use two lightweight
modes: “zero-shot CoT”, where only this instruction is added: ‘Think step
by step. First, assess the system summary for PrivEsc paths. Then, evaluate the
last command and output. Finally, decide on the most logical next command’;

Introducing PenTest2.0 5

and “few—-shot CoT”, where concise examples, drawn from earlier successful
PrivEsc runs, show the expected reasoning and output structure.

Hints: PenTest2.0 employs human hints, which allow a pen-tester to
inject concise, structured guidance into the LLM prompt, leveraging operator
knowledge to steer reasoning and reduce wasted turns. For example: ‘Human
Hint: use the ‘id’ command instead of the ‘/bin/sh’ for automated root veri-
fication’. This lightweight human-in-the-loop (HITL) [8] mechanism improves
convergence and control while adding negligible prompt overhead.

Non-Interactive Commands: To prevent shell hangs caused by LLM-
suggested interactive commands (e.g., sudo su), PenTest2.0 requires the
model to output both a safe non-interactive command for automated SSH ex-
ecution and an optional interactive variant for manual use. This dual-format
instruction improves reliability, avoids blocking, and preserves operator control
during multi-turn PrivEsc.

RAG: PenTest2.0 employs a hybrid, low-overhead RAG design: offline,
a curated corpus (e.g. GTFOBinsEI) is pre-downloaded, indexed, and queried
locally to supply short, targeted snippets without incurring runtime latency or
network dependence; and online, lightweight live lookups that retrieve up-to-
date snippets which are minimally summarised and injected into the prompt
only when the LLM requests external support. In either case, retrieved snippets
are inserted in a compact, structured form so the LLM can use them to justify
or refine a non-interactive command. This pragmatic RAG approach balances
relevance, prompt-size control, and operational reliability.

PTT: penTest2.0 extends the PTT by allowing dynamic updates of ‘up-
dated_statuses’, ‘new_subtasks’, and ‘commands_to_avoid’. A sample is as fol-
lows. “Current PTT Status: Subtask 1: Examine sudo privileges. Status: pend-
ing. Subtask 2: Identify potential misconfigurations in awk. Status: pending.”

Prompt Cost Control: PenTest2.0 computes token count and estimated
API cost before every LLM call and displays them to the user for approval. This
prevents prompt bloat, avoids unexpected charges, and enforces human oversight
in multi-turn runs; an approach informed by early tests where unchecked prompt
growth rapidly consumed credits. The approval step is repeated each turn to
maintain strict cost and governance control.

Safe Command Execution: Experiments show that LLM suggestions may
be misleading or even hazardous. The LLM might, for instance, generate unsafe
commands such as rm —rfv =*, which could delete the entire filesystem, or com-
putationally expensive actions like zip -rv zipped.zip /, which attempts
to compress the full system recursively. To prevent this, PenTest2.0 com-
bines a local blacklist of unsafe patterns with mandatory human approval. Any
command matching the blacklist is discarded automatically, while all remaining
suggestions are shown to the user, together with the LLM'’s rationale, for ex-
plicit confirmation before execution. Only authorised commands are executed via
SSH, with outputs logged for later reasoning and reporting. This dual-approval

5https://gtfobins.github.io/

https://gtfobins.github.io/

6 H. Al-Sinani & et. al

process, consisting of static command filtering and real-time human validation,
ensures both operational safety and ethical control.

LLM Safety Mechanisms: Some LLMs employ built-in safety and pol-
icy enforcement mechanisms that may cause them to refuse or partially redact
responses to prompts related to sensitive security scenarios, including PenTest-
ing and exploit development. Although this behaviour was not observed in our
PoC experiments, it represents a practical consideration for GenAl-assisted secu-
rity tooling and can often be mitigated through model substitution, as different
LLMs exhibit varying degrees of strictness and policy interpretation. Recent
studies [10,/17,|20] further indicate that such safeguards are not absolute and
may be circumvented under certain conditions via techniques such as prompt
re-framing, multi-turn context manipulation, and role-based conditioning, high-
lighting that safety enforcement in contemporary LLMs remains probabilistic
and model-dependent rather than formally guaranteed.

4 Prototype Implementation

PenTest2.0 is implemented in Python 3 for its flexibility and strong library
ecosystem. All experiments were conducted in VirtualBox 7 running on a phys-
ical host, a Lenovo Windows 11 laptop (Intel Ultra 7, 32 GB RAM). The vir-
tual environment consisted of a Kali Linux VM running PenTest2.0 and a
lightweight Debian-based target VM, connected via a NAT Network to simulate
an isolated test environment. For GenAl integration, PenTest2.0 uses Ope-
nAl’s gpt—4o0-mini model through the official API, selected for its favourable
cost—performance trade-off. While more advanced models (e.g., 03, gpt-4.1,
gpt->5) are supported, they were not used due to higher token costs. Alternative
LLM providers (e.g., Gemini, DeepSeek) remain possible options. PenTest2.0
functions as an Al-driven, modular, multi-turn, PrivEsc agent, as outlined below.

1. Initial Setup: The prototype is a modular Python3 application running
on a Kali VM and assumes an existing low-privilege foothold on the tar-
get. It is launched via CLI with a config file (target IP, SSH credentials,
LLM model, max turns) and optional flags (CoT, RAG, PTT, hints). On
startup it verifies Internet and SSH connectivity, initialises core modules (e.g.
command.-executor, llm.connector, shell_root.detection, etc.),
creates timestamped logs and counters, and loads optional knowledge stores.

2. Bootstrapping and Reconnaissance: On launch, it initialises config-
ured modules (e.g. RAG, CoT, PTT, human hints), performs a compact
SSH scan of the target (e.g. whoami, id, hostname, uname -a, cat
/etc/os-release, sudo -1, ss —-tulnp, df -h, free -m, ps aux
-—sort=-%mem | head -n 10,1s -la /tmp, find / -perm -4000
-type £ 2>/dev/null), parses and summarises outputs.

3. Prompt Construction: It assembles a structured LLM prompt from gath-
ered reconnaissance using Python template logic; optional components (CoT,
RAG, PTT, human hints) are injected only if enabled. The prompt con-
tains: (a) system summary: concise OS, user, and privilege facts (from

10.

Introducing PenTest2.0 7

id,uname -a, sudo -1, env,etc.); (b) command history: a recent, size-
capped list of attempted commands and outputs (oldest entries dropped to
avoid prompt bloat); (c) reasoning instructions: a short directive (e.g.
‘think step by step’) and optional CoT scaffolding; (d) task goals/re-
sponse schema: require a single, valid JSON object containing at mini-
mum a non_interactive command, an optional interactive variant, a brief
system_summary, a short command_history, and a two-sentence rationale;
and (e) optional enhancements: conditionally add RAG excerpts, PTT
state, or a human hint when requested. To ensure parsing and automation,
the LLM is instructed to return one compact JSON object only.

Prompt Submission: PenTest2. 0 first computes the token count of the
prompt, estimates its cost for the chosen model, and displays this to the
user. The system submits the prompt to the LLM only after explicit user
approval, preventing oversized prompts and unintended API expenditure.

LLM Response: Upon receiving the prompt, the LLM returns a single com-
pact JSON object containing the following fields: ‘non_interactive_command’
(for automated root detection); interactive_command (manual variant);
‘system_summary’ (concise key facts); command_-history (a summarised,
capped list of previously executed commands and their outputs); and ‘ratio-
nale’ (a brief, context-aware justification explaining why the proposed com-
mand is suitable). If PTT is enabled, the object may include ptt_update
with initial_tree, new_subtasks, updated.statuses, & commands.

User Approval: PenTest2.0 presents the proposed command and its
concise rationale to the operator for explicit approval; only user-approved
commands are executed via SSH and their outputs logged for next turns.

Iterative Feedback Process: If root privileges are not acquired (e.g., when
the output lacks uid=0 (root)), PenTest2.0 condenses the command
output and prepares the next prompt. This prompt integrates the updated
system context, command history, and any relevant PTT changes. The pro-
cedure continues for a fixed number of turns or until PrivEsc succeeds. In
later turns, both LLM requests and responses follow the structured format
specified in steps |3| and [b] ensuring consistent and traceable interactions.

Optional enhancements: At runtime, users may enable: (i) local RAG
from a FAISS-backed markdown store (FAISS: Facebook AI Similarity Search
for fast vector lookup, e.g. GTFOBIins); (ii) online GTFOBIns retrieval; (iii)
CoT reasoning; (iv) human-injected hints; and, (v) PTT tracking, which tags
commands with task IDs and updates task statuses (pending, in_progress,
done, skipped) across turns.

Root Detection and Termination: After each execution, PenTest2.0
applies regex-based checks to detect root access; if confirmed, the loop ter-
minates immediately, otherwise the next turn begins.

Logging and Reporting: The system records all prompts, commands,
outputs, reasoning traces, token metrics, and PTT updates, and produces
structured logs and a final session summary, with optional visualisations.

8 H. Al-Sinani & et. al

5 Test Results

We evaluated PenTest2.0 across seven system configurations combining or
excluding CoT, hints, RAG, and PTT. All tests targeted a vulnerable Linux
VM with known PrivEsc vectors to assess robustness, automation performance,
and feature-specific behaviour. Table [1| summarises the results, where all seven
configurations attained root (either automatically or with manual confirma-
tion). Four yielded automatic root detection, and the other three failed to de-
tect root because the LLM-proposed commands (such as: sudo awk ‘BEGIN
{system ("/bin/sh") }’) spawn an interactive shell that the non-interactive
SSH wrapper cannot observe; we plan to investigate this. Configurations 1-4
used non-interactive variants (e.g. sudo awk ‘BEGIN {system("id")}’),
allowing the ShellDetector to parse outputs such as uid=0 (root) and ter-
minate the loop early. Table [2] gives an overview of configuration performance
across key dimensions, showing trade-offs in speed, cost, accuracy, and feature
richness.

Table 1: PenTest2.0 results across seven configurations (max. 10 turns).

Config —CoT —Hint —CoT —Hint ALL -RAG -PTT None
Root v v v v v v v
Auto-root v v v v Root manually confirmed
Turns 1 2 2 2 10 10 10

Table 2: Compressed summary of PenTest2.0 configuration characteristics.
Fastest to Root Cost-Effective Best Balance Feature-Rich

CoT Hint CoT CoT Hint CoT Hint RAG PTT

Turn 1 Lowest tokens Early root All flags; highest cost

6 Cost Analysis

PenTest2.0 performs cost tracking using OpenAl’s July 2025 pricing. For each
turn, we recorded prompt and completion tokens and applied the model’s rates,
e.g. $0.15/M prompt tokens and $0.60/M completion tokens. Total session cost
is the sum of per-turn input and output charges. When needed, word counts are
estimated using 1 word ~ 1.33 tokens, and completion size is approximated as
40% of the prompt. For example, a 5,000-token prompt with a 2,000-token com-
pletion costs $0.00195 per turn. 7 configurations were evaluated, each permitted
up to 10 turns. Results appear in Table|3| Early-success setups (CoT+Hint, Hu-
manHint, CoT) achieved root in 1-2 turns at very low cost, whereas verbose
or reasoning-heavy configurations (No-Flags, RAG, PTT) reached the 10-turn
cap without auto-detecting root access, consuming more tokens but offering no
accuracy advantage, showing that higher-cost configs do not necessarily yield
better performance, as excessive verbosity can degrade effectiveness and inflate
cost. Lightweight prompting (CoT+Hint or Hint) offers the best speed and cost.

Introducing PenTest2.0 9

Table 3: Tabulated cost (in §) and turn count across configurations.

Config. | CoT+Hint Hint CoT ALL NoFlags RAG PTT

Turns 1 2 2 2 10 10 10

Cost 0.00053 0.00066 0.00091 0.00207 0.00310 0.00394 0.00623

7 General Discussion

Research Questions: For RQ1, our experiments show that LLMs, e.g. GPT-
4o, are capable of autonomously discovering and carrying out PrivEsc techniques
on realistic Linux systems, often achieving root within 1-2 turns in configurations
like CoT or Hint. However, because LLMs may propose unsafe or interactive
commands, non-interactive enforcement and HITL supervision remain essential
for safe and successful operation. For RQ2, CoT and human hints consistently
improved reasoning depth, reduced repetition, and accelerated escalation, while
RAG and PTT enhanced contextual grounding and traceability. Yet these heav-
ier techniques also increased prompt size and cost, and often did not improve
performance due to prompt stress or hallucinations. The —CoT —Hint config-
uration offered the best balance of efficiency, reliability, and cost-effectiveness.
For RQ3, several limitations emerged: LLMs occasionally hallucinated unsafe or
invalid commands, ignored output rules, repeated failing strategies, or produced
interactive shells that bypassed automated root detection. Some commands were
resource-intensive enough to risk system instability. These issues highlight the
need for controlled prompt design, command filtering, and HITL oversight.
Benefits: PenTest2. 0 extends its predecessor by introducing autonomous,
multi-turn PrivEsc powered by GenAl while preserving safety and user control.
It automates escalation through an iterative reasoning loop that adapts to com-
mand outputs, supports advanced techniques such as CoT, RAG, PTTs, and
optional human hints, and maintains structured execution with robust logging
for auditability. Lightweight human collaboration improves success rates without
compromising automation, and a modular Python architecture enables extensi-
bility and open-source adoption. Safety and cost control are enforced through
token-cost estimation, command blacklisting, and mandatory user approval, en-
suring responsible and efficient operation in security-critical contexts.
Limitations: There remain limits to PenTest2.0 capabilities. The LLM
may still produce ineffective, unsafe, or ambiguous commands, particularly in
hardened or unfamiliar environments, and automated execution — although
mitigated by blacklisting, user approval, and cost checks — carries inherent
operational risk. Reliance on cloud-hosted LLMs raises privacy and compliance
concerns, requiring careful adherence to organisational policies. Moreover, all
evaluations were conducted on controlled Linux targets with known PrivEsc
vectors, limiting generalisability. In addition, intrinsic LLM shortcomings such
as hallucinations, prompt sensitivity, and semantic drift persist, reinforcing the
need for continued HITL oversight to ensure correctness and safe use in offensive
security contexts. Finally, our experimentation show that the LLM also exhib-

10 H. Al-Sinani & et. al

ited unstable behaviours, including repeatedly proposing the same ineffective
command and occasionally generating resource-intensive actions capable of de-
grading target VMs. While stronger models may reduce such failures, they do so
at a substantially higher cost, underscoring a reliability—affordability trade-off.

8 Related Work

GenAl is increasingly used in cybersecurity, spanning both defensive and of-
fensive security, including ethical hacking. Despite significant progress [1}9,/11/-
13/15,[19], a fully autonomous, comprehensive PenTesting system remains elu-
sive. Many such systems have emerged in parallel with our work, which included
proposing conceptual frameworks for GenAl-driven PenTesting [6], evaluating
LLM performance in Windows [2] and Linux environments [7], and analysed
GenAl-supported exploitation and manual PrivEsc [3]. We showed that GenAl
can accelerate decision-making and automate parts of the PenTesting workflow.
PentestGPT [9] is a recent LLM-based assistant that employs reasoning,
generation, and parsing modules, together with PTTs, to guide users through
manual command execution in a HITL workflow. However, its reliance on man-
ual user execution limits automation. To improve upon this, PenTest++ [4]
automated predefined PenTesting actions, governed by user approval.

9 Conclusions and Future Work

This paper introduced PenTest?2 .0, an extension of PenTest++ that concen-
trates on automating the PrivEsc phase of PenTesting. The system was built as
a GenAl-enhanced prototype that operates across multiple interaction rounds,
generates and executes commands in real-time, and updates its behaviour using
feedback from the target. Experimental tests carried out under several configura-
tion settings, including CoT, RAG, PTT, and operator hints, show that GenAl
support can be applied to PrivEsc in a predictable and manageable manner
when combined with explicit task control and human supervision. The results
further suggest that guided reasoning with hints offers a reasonable trade-off
between execution time, stability, and monetary cost. To reduce risks associ-
ated with LLM failures, PenTest2.0 incorporates structured task tracking,
token-aware prompt construction, and built-in safety mechanisms. Nevertheless,
practical limitations were observed, including incorrect outputs, reduced effec-
tiveness during long sessions, and repeated unproductive command selections,
which confirms that direct user supervision remains essential.

Further research will focus on expanding PenTest2.0 to cover other post-
exploitation activities, including lateral movement and persistence. In addition,
planned quantitative analysis will examine time savings, user confidence, and
resource utilisation, together with systematic comparisons against tools such
as PentestGPT to establish more robust evaluation benchmarks. An extended
version of this paper is available on arXiv [5].

Introducing PenTest2.0 11

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Abu-Dabaseh, F.; Alshammari, E.: Automated penetration testing: An overview.
In: The 4th international conference on NLC, Denmark. pp. 121-129 (2018),
https://airccj.org/CSCP/vol8/csit88610.pdf

Al-Sinani, H., Mitchell, C.: Unleashing AI in ethical hacking: A prelim-
inary experimental study. Technical report, Royal Holloway, University of
London (2024), https://pure.royalholloway.ac.uk/files/58692091/
TechReport_UnleashingAIinEthicalHacking.pdf

Al-Sinani, H.S., Mitchell, C.J.: Al-augmented ethical hacking: A practical examina-
tion of manual exploitation and privilege escalation in Linux environments. CoRR
abs/2411.17539 (2024), https://doi.org/10.48550/arXiv.2411.17539
Al-Sinani, H.S., Mitchell, C.J.: Introducing PenTest++: An Al-augmented, auto-
mated, ethical hacking system. In: CyBAI’25 Proc. pp. 565-570. IEEE (2025)
Al-Sinani, H.S., Mitchell, C.J.: PenTest2.0: Towards autonomous privilege escala-
tion using GenAl. CoRR abs/2507.06742 (Jul 2025). https://doi.org/10.
48550/ARXIV.2507.06742

Al-Sinani, H.S., Mitchell, C.J., Sahli, N., Al-Siyabi, M.: Unleashing AI in ethical
hacking. In: Martinelli, F., Rios, R. (eds.) STM Proc. LNCS, vol. 15235, pp. 140—
151. Springer (2024)

Al-Sinani, H.S., Sahli, N., Mitchell, C.J., Al-Siyabi, M.: Advancing ethical hacking
with AL: A Linux-based experimental study. In: Costa, G. (ed.) ITASEC Proc.
vol. 3962. CEUR-WS (2025)

Amershi, S., et. al: Power to the people: The role of humans in interactive machine
learning. In: AT Magazine. vol. 35, pp. 105-120 (2014)

Deng, G., et. al: PentestGPT: Evaluating and harnessing Large Language Models
for automated penetration testing. In: USENIX Security '24. pp. 847-864 (2024)
Hackett, W., et. al: Bypassing LLM guardrails: An empirical analysis of evasion
attacks against prompt injection and jailbreak detection systems. In: Derczynski,
L., et. al (eds.) LLMSEC ’25 Proc., Vienna, Austria. pp. 101-114. ACL (Aug 2025)
Happe, A., Cito, J.: Getting pwn’d by Al: Penetration testing with Large Language
Models. In: ESEC/FSE 23 Proc. pp. 2082-2086. ACM (2023)

Hassanin, M., Moustafa, N.: A comprehensive overview of Large Language Models
(LLMs) for cyber defences: Opportunities and directions. arXiv:2405.14487 (2024)
Lazarov, W., et al.: Penterep: Comprehensive penetration testing with adaptable
interactive checklists. Computers & Security 154, 104399 (2025)

Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP
tasks. In: NeurIPS ’20. vol. 33, pp. 9459-9474. Curran Associates, Inc. (Dec 2020)
Stefinko, Y., et al.: Manual and automated penetration testing. benefits and draw-
backs. Modern tendency. In: TCSET ’16. pp. 488-491. IEEE (2016)

Swanson, M., et. al: Technical guide to information security testing and assessment
(NIST SP 800-115). Tech. rep. (2008)

Wei, A., Haghtalab, N., Steinhardt, J.: Jailbroken: How does LLM safety training
fail? In: Oh, A., et. al (eds.) Advances in in NeurIPS 23, Sydney, Australia. vol. 36,
pp. 80079-80110. Curran Associates, Inc. (2023)

Wei, J., et. al: Chain-of-thought prompting elicits reasoning in large language mod-
els. In: NeurIPS ’22. vol. 35, pp. 24824-24837. Curran Associates, Inc. (2022)
Xiong, P., Peyton, L.: A model-driven penetration test framework for web appli-
cations. In: PST ’10. pp. 173-180. IEEE (2010)

Zou, A., et. al: Universal and transferable adversarial attacks on aligned language
models. arXiv:2307.15043 (2023), https://arxiv.org/abs/2307.15043

https://airccj.org/CSCP/vol8/csit88610.pdf
https://pure.royalholloway.ac.uk/files/58692091/TechReport_UnleashingAIinEthicalHacking.pdf
https://pure.royalholloway.ac.uk/files/58692091/TechReport_UnleashingAIinEthicalHacking.pdf
https://doi.org/10.48550/arXiv.2411.17539
https://doi.org/10.48550/ARXIV.2507.06742
https://doi.org/10.48550/ARXIV.2507.06742
https://doi.org/10.48550/ARXIV.2507.06742
https://doi.org/10.48550/ARXIV.2507.06742
https://arxiv.org/abs/2307.15043

12 H. Al-Sinani & et. al

PenTest2.0
(State Capture . LLM
+ Prompt Builder > User > (PrivEsc Com-
+ Optional En- "| (Prompt Approval) . mand Reasoning
hancements) & Suggestion)
Y
(c;zla:flzs;{igdler User Target VM PenTest2.0
+ Output Analysis | ™| (Command - (Low-Privileged (| (Outcome: Root
+ Orf:)hestrato};) Approval) Shell) or Max Turns)

Fig. 1: PenTest2.0 architecture with iterative loop
*
? Safe to execute above command? (y/n): vy

ROOT ACCESS ACHIEVED!
Ending escalation.

E Cumulative Token Usage and Cost Summary

$a 000263 $0 0001 $a 000391

S — p— e —————

Successfully Executed Commands (This Run)

e Jewe

- sudo /usr/bin/awk 'BEGIN {system("id")} ' uid=0(root) gid=0(root) groups=0(root)

No skip reasons to display for this session.

v AutoAgent Test Completed Successfully.

B Token usage plot saved at: logs/token_usage_per_turn.png
B Cost tracking summary displayed after test.

B Summaries and detailed logs saved inside the logs/ folder.

Fig.2: ‘Root’ achieved with the HumanHint feature enabled

	PenTest2.0: Advancing Ethical Hacking with GenAI–Driven Privilege Escalation

