Exploiting existing security infrastructures

Chris Mitchell
Information Security Group
Royal Holloway, University of London
http://www.chrismitchell.net
Acknowledgements

• This is joint work with Chunhua Chen and Shaohua Tang (South China University of Technology).

• Chunhua Chen was a visitor at RHUL between 2009 and 2011.
Contents

• Security infrastructures
• GAA
• UMTS-GAA
• EMV-GAA and TC-GAA
• Applying GAA variants
• Privacy issues
• Conclusions
Need for infrastructure

• Just about any system using cryptography for security needs a key management system.

• This typically involves either:
 – setting up shared keys, e.g. between a server and multiple clients;
 – setting up a PKI by requiring clients to: (a) generate key pairs, and (b) obtain public key certificates from a CA.
Cost implications

• Setting up a new security infrastructure is a potentially very costly business.
• For example, distributing SIMs to all users of a mobile phone network makes sense because of the sales volume – however, for other services the cost of such a solution becomes prohibitive.
• The alternative, widely used today, involves a combination of user passwords and one-way authenticated SSL/TLS – this approach has many, widely documented, vulnerabilities.
Infrastructure re-use

• Therefore appealing to find ways to build on existing security infrastructures.

• Two main motives:
 – increased security and relatively low cost for service provider;
 – extra revenue stream for infrastructure owner.

• This is already happening ...
Examples of re-use I: CAP

- The Chip Authentication Programme (CAP) involves re-use of EMV cards for user-bank authentication.
- Users issued with special card readers.
Examples of re-use II: SIM apps

- The mobile phone (U)SIM can be used as a secure location for other applications.
- The SIM Application Toolkit (SAT) allows applications in the SIM to initiate actions (old technology).
- More recently, phone-based NFC payment card emulation using the SIM as a secure environment has been demonstrated.
Examples of re-use III: OAuth

• Facebook Connect implements the OAuth 2.0 standard, and uses it to provide a single sign-on (SSO) service.

• This builds on the relationship Facebook has with its clients.

• Facebook Connect allows users to sign-on to applications (e.g. Facebook-affiliated websites) using their Facebook account, and also enables such applications to access Facebook-hosted user data, subject to user authorisation.
Issues

• Such re-use of existing trust relationships has clear privacy and security issues.

• We note the following privacy issues:
 – existing infrastructure owner will learn about user interactions with other entities;
 – infrastructure owner could use information to build user profile, e.g. for focused advertising;
 – other entities will learn about user’s existing trust relationships.
Scope of this talk

• Look at a specific general purpose architecture for infrastructure use.
• Consider instantiations of this architecture.
• Consider applications of this architecture.
• Look at privacy and security issues.
Contents

• Security infrastructures
• **GAA**
• UMTS-GAA
• EMV-GAA and TC-GAA
• Applying GAA variants
• Privacy issues
• Conclusions
The term *Generic Authentication Architecture* (GAA) has been developed within the mobile phone community. It refers to a standardised way of exploiting the mobile phone security infrastructure to provide general purpose authentication and key management services. The mobile operator acts as a TTP. We start by describing this architecture in general terms.
GAA roles

- The GAA architecture involves three roles:
 - **Bootstrapping Server Function (BSF)** – this is the TTP that provides the service;
 - **GAA-aware application server** – has trust relationship with BSF;
 - **GAA-enabled user platform** – has an existing security relationship (e.g. shared secret key) with the BSF.
GAA service

- GAA establishes an authenticated application- and server-specific secret key between a GAA-enabled user platform and a GAA-aware application server.
- User platform must have an existing security context with a party working with the GAA service provider (BSF).
- The target server must have a relationship with the GAA service provider (BSF).
GAA overview

- BSF server B
- GAA-aware application server S
- Use of GAA bootstrapped keys
- GAA bootstrapping
- Credentials (e.g. shared keys)
- GAA-enabled user platform P

For example:

- SIM
 - i.e. subscriber keys

The underlying security infrastructure
GAA procedures

• Two main procedures:
 – **GAA bootstrapping** – Establishes a secret master key MK (+ a key identifier $B-TID$ and a key lifetime) between GAA-enabled user platform and the BSF.
 – **Use of bootstrapped keys** – Establishes an application- and server-specific session key SK between platform and server using MK [MK is not divulged to the server]:

 $$SK = f(MK, \text{server-ID}, \text{app-ID}, \ldots)$$

 where f is a key derivation function.
Key provisioning

• The GAA-enabled user device can calculate SK for itself.
• The GAA-enabled server is provided with SK by the BSF.
• Thus a secure channel between the BSF and the server is required.
Our goal

- GAA was designed specifically for use with the 3G mobile telecoms. security infrastructure (we call this UMTS-GAA).
- We show how to provide GAA-like services with other pre-existing infrastructures.
- As a result, any services built on UMTS-GAA can immediately be migrated to other security infrastructures.
Contents

• Security infrastructures
• GAA
• **UMTS-GAA**
• EMV-GAA and TC-GAA
• Applying GAA variants
• Privacy issues
• Conclusions
UMTS – background

• The UMTS security infrastructure (supporting mobile phone security) has the following roles:
 – **USIM** – smart card held by user (in phone);
 – **Home Subscriber Server (HSS)** – shares secret key with USIM; HSS is operated by mobile phone service provider with whom user has contractual relationship.
UMTS-GAA

• In UMTS-GAA:
 – GAA-enabled user platform is a UMTS-enabled mobile device, with a USIM;
 – USIM shares key with HSS of issuing network;
 – BSF connects to the HSS for the USIM (BSF could be owned by same operator);
 – UMTS Authentication and Key Agreement protocol (UMTS AKA) used to establish MK between GAA-enabled user platform and BSF (MK is concatenation of IK and CK).
UMTS-GAA
Session key derivation

• In use of bootstrapped keys:

\[SK = f(MK, \text{RAND}, \text{mobile-ID}, \text{server-ID}, \text{app-ID}, \ldots) \]

• RAND is the value used in the UMTS AKA protocol (functions as a random challenge in the protocol).
Contents

• Security infrastructures
• GAA
• UMTS-GAA
• EMV-GAA and TC-GAA
• Applying GAA variants
• Privacy issues
• Conclusions
Using the GAA architecture

• Chen et al. (2012) have designed a version of GAA (EMV-GAA) which enables existing EMV infrastructure to be used to provide generic security services in a simple and uniform way.

• It supports the same generic GAA interface as UMTS-GAA.

• [For further details see SecureComm 2012 proceedings].
Roles

• The following roles are involved in the scheme.
 – C, EMV credit/debit card;
 – T, user terminal with card-reader;
 – P, user platform (T and C combined);
 – I, card issuing bank;
 – B, BSF server (online) with secure link to I,
 – S, GAA-aware application server (not involved in bootstrapping)
EMV-GAA

Issuing bank server

BSF server

GAA-aware application server

Use of GAA bootstrapped keys

the underlying EMV security infrastructure

EMV-GAA bootstrapping

GAA-enabled platform

P
EMV-GAA bootstrapping

- Involves P (user terminal and card), I (card issuer) and B (bootstrap server).
- Sets up authenticated secret master key (MK) between P and B, assisted by I.
 1. After receiving request, B generates R_B and sends it to T.
 2. User puts card C in reader, and T issues a **Generate AC** command to C, with UN (Unpredictable Number) set to R_B, other data M, and $Amount Authorised$ set to zero.
EMV-GAA bootstrapping II

3. C returns an AAC, a 64-bit MAC computed using a secret key known only to C and I.

4. T generates R_T, and uses AAC as secret key to derive $RES = f_{AAC}(R_T, R_B, Id_B, M)$, where f could be HMAC.

5. P sends PAN (card number), R_T, M and RES to B, which forwards PAN and M to card issuer I (via a secure channel).

6. I recomputes AAC using received data, and sends it back to B.
7. B uses the received AAC to recompute RES and compare it with the value received earlier (to complete authentication of P).

8. B generates master key as $MK=KDF(AAC,R_T,R_B)$.

9. B computes $XRES=f_{AAC}(R_B,R_T,PAN)$ and sends it to P.

10. T recomputes XRES and compares it with the received value to complete mutual authentication.

11. Finally T computes MK, and bootstrapping is complete.

- Only gives 64 bits of key entropy, but can generate two AACs to get greater security.
EMV-GAA use of bootstrapped key

- This is exactly the same as in UMTS-GAA (and generic GAA).
EMV-GAA properties

• Two major issues.
 – *Involves inserting an EMV card into a non-bank terminal – a risk in itself.* This can be resolved by requiring the bootstrap server to equip the user with a special card reader, as happens today with CAP (chip authentication program).
 – *The PAN is sensitive, and must be sent to the bootstrap server B.* This can be avoided using a one-off registration procedure.
EMV-GAA – further developments

• Some EMV cards (supporting CDA or DDA as opposed to the widely used SDA) possess an RSA key pair and a certificate chain for the public key.
• Such a card can be requested to compute a signature by any card reader.
• This could be used to support GAA in a different way.
• It could also function as the basis of something like a universal PKI.
TC-GAA

• A further existing security infrastructure which could be used as the basis of a GAA service (TC-GAA) is the trusted computing infrastructure.
• The use of trusted computing (i.e. the TPM) to support GAA has been described by Chen et al.
• [For further details see the proceedings of INTRUST 2011].
TC-GAA – overview
TC-GAA – a sketch

• The TPM on the client machine is instructed to generate a new encryption key pair.
• The public key is then signed (certified) by the TPM using a previously generated Attestation Identity Key (AIK).
• The newly generated certificate is now sent to the BSF along with a previously generated Privacy-CA-generated certificate for the AIK public key.
• After verifying the two certificates, the BSF generates an \(MK \), encrypts it using the TPM-generated public key, and ships it back to the TPM.
• This complete the TC-GAA bootstrapping procedure.
TC-GAA properties

- Note that the derivation of SK can be very similar to the generic case.
- It is interesting to observe that, unlike UMTS-GAA and EMV-GAA, the ‘issuer’ of the TPM is not actively involved.
- Any TTP can function as the BSF without a trust relationship with a further third party.
- This enhances the privacy properties.
- This advantage results from building GAA on asymmetric crypto rather than shared secrets.
GAA as a general framework

- GAA was originally designed to provide a way of exploiting the mobile phone security infrastructure.
- We have shown how it can be used to build on the EMV and TC infrastructures.
- Could also be used as a framework for providing general purpose security services building on other pre-existing security infrastructures.
Using infrastructures directly

• It is perfectly possible to design applications building directly on the trusted computing infrastructure.
• Substantial literature now exists.
• However, secure application protocols are non-trivial to design.
• Trust relationships can be very unclear.
• Infrastructure provider will have access to all session keys.
Contents

• Security infrastructures
• GAA
• UMTS-GAA
• EMV-GAA and TC-GAA
• Applying GAA variants
• Privacy issues
• Conclusions
GAA-based one-time passwords

- One possible application of GAA is to enable the simple derivation of one-time passwords (OTPs).
- These passwords are based on a (potentially weak) long-term user password.
- The GAA session key provides protection against brute force password searches.
GAA-based one-time passwords II

- The OTP is computed as a function of the long-term user password and the short term application-specific session key.
- Compromise of the OTP does not enable a brute-force search for the password without knowledge of the session key.
- If EMV-GAA is used, the EMV card used in the protocol does not need to be registered to the user – only needs to be trusted not to compromise the password.
EMV-GAA-OTP

1. $P \leftrightarrow BSF(I)$: bootstrap GAA credentials.
2. $U \rightarrow P$: username and pw.
3. P: derives a session key SK and computes $otp = f(SK, pw)$.
4. $U(P) \rightarrow S$: B-TID, username and otp.
5. $S \leftrightarrow BSF$: S fetches SK and its lifetime.
6. S: checks whether or not SK is valid; if so, S recomputes otp for authentication; if not, S discards the request.
TC-GAA-OTP

1. $T \leftrightarrow BSF$: bootstrap GAA credentials.
2. $U \rightarrow C$: username and pw.
3. $C \leftrightarrow T$: interact for a session key SK.
4. C: computes $otp = f(SK, pw)$.
5. $U(C) \rightarrow S$: B-TID, username and otp.
6. $S \leftrightarrow BSF$: S fetches SK and its lifetime.
7. S: checks whether or not SK is valid; if so, S recomputes otp for authentication; if not, S discards the request.
GAA OTP – other instantiations

• The notion of using a GAA session key to help generate an OTP from a long-term weak password applies to all instantiations of GAA.

• Indeed, in parallel work we have designed a series of simple OTP schemes using a GAA-enabled mobile phone.
GAA-based SSO

• We are also developing ways in which GAA could be used to build more general identity management solutions, including single sign-on schemes.

• Some work along these lines has already been standardised for UMTS-GAA, notably interoperation with CardSpace, OpenID and Liberty.
Contents

• Security infrastructures
• GAA
• UMTS-GAA
• EMV-GAA and TC-GAA
• Applying GAA variants
• Privacy issues
• Conclusions
Privacy

• We can think about privacy in terms of who gains access to what PII of a user.
• Indeed, under some definitions, privacy equates to PII management.
• Regardless of whether this is true, the generation, control, dissemination and use of PII is certainly a core part of privacy.
• Look at privacy aspects of infrastructure re-use, using GAA as an example.
Trust in Infrastructure provider

- In GAA using symmetric crypto, the infrastructure provider is asked for an MK by the BSF during every bootstrapping.
- The MK is not specific to any server.
- It gives general information about user activity.
- A ‘nosy’ infrastructure provider could use the MK to compute server/application-specific keys if it eavesdropped on connections.
- **Risk**: depends on nature of provider – e.g., telecommunications providers and ISPs can already eavesdrop ...
Trust in proxy (BSF in GAA)

- The BSF learns a lot:
 - it knows identifiers of all servers and applications a user interacts with;
 - it has access to all the secret keys established with these servers.
- BSF could be a ‘special purpose’ TTP.
- **Risk**: great – a high level of trust is needed in the BSF.
Trust in Service Provider

• Service provider will learn which proxy (BSF) user prefers.

• However, the SK given to the server should yield no useful information about the MK or any other Service Providers in use.

• **Risk**: seems relatively low.
Impact of cryptography

• Asymmetric cryptography has certain privacy advantages over symmetric cryptography, at least in context of GAA.
• If underlying infrastructure involves asymmetric key pairs, then there is no need for infrastructure provider to be actively involved in bootstrapping.
• This reduces privacy threat from infrastructure provider.
Improving privacy

- How can we improve privacy?
- Major threat is that BSF knows all keys.
- User and server could use secret SK as basis for an authenticated Diffie-Hellman key exchange.
- Newly established key would not be available to the BSF.
Contents

• Security infrastructures
• GAA
• UMTS-GAA
• EMV-GAA and TC-GAA
• Applying GAA variants
• Privacy issues
• Conclusions
Conflicts

• As has been observed many times, there is a major conflict between:
 – the (claimed) desire of users for privacy, versus:
 – the observable large scale use of services which potentially compromise privacy, e.g. Facebook itself and Facebook Connect.

• Re-using an existing security infrastructure involves some privacy compromises, but it may be very convenient.
Trust

• All these GAA-based schemes require some level of trust in the TTP providing the BSF functionality.
• The exact degree of trust depends on the application.
• This may be a problem for some applications, but not for others, particularly for corporate environments.
• We can also take extra precautions, e.g. by using multiple BSFs.
Questions ...