Vulnerabilities in OAuth-based single sign on systems

Wanpeng Li and Chris J Mitchell

Agenda

- Single sign-on and OAuth 2.0
- Motivation
- Two case studies
- Security analyses
- Concluding remarks
Single sign on (SSO)

• An Internet single sign on (SSO) system allows a user to log in to multiple web sites with just one authentication.
• Increasingly widely used, e.g. in form of
 – Facebook Connect (Oauth 2.0);
 – Google (formerly OpenID and now OpenID Connect).

Terminology

• Identity Provider (IdP) authenticates user and vouches for User identity to ...
• Relying Parties (RPs), which rely on IdP and provide online services to ...
• Users, who employ ...
• User Agents (UAs) (typically web browsers), to interact with RPs.
OAuth 2.0

- OAuth 2.0, published in 2012 (RFC 6819) is being widely used as the basis of SSO services, e.g. for Facebook Connect.
- It is also being very widely used for SSO by a wide range of popular IdPs in China.
- Issues with use of OAuth 2.0 by Facebook and others have already been identified.
- This motivated study of security of Chinese implementations.

OAuth design goals

- Original goal of OAuth (1.0 & 2.0) not SSO.
- OAuth allows a Client application to access information (belonging to a Resource Owner) held by a Resource Server, without knowing the Resource Owner’s credentials.
- Also requires an Authorisation Server, which, after authenticating the Resource Owner, issues an access token to the Client, which sends it to the Resource Server to get access.
Use for SSO

• When used to support SSO:
 – **IdP** = Resource Server + Authorisation Server;
 – **Client** = RP;
 – **User** = Resource Owner;
 – **UA** = web browser.

• Access token used to provide SSO service.
• Of the 4 ways to get access tokens, we focus on **Authorisation Code Grant**.

OAuth 2.0/SSO – data flows

1. User clicks button on RP website, and UA sends HTTP request to RP.
2. RP sends OAuth 2.0 **authorisation request** to UA, optionally including **state** variable (used to maintain state between request and response).
3. UA redirects request to IdP.
4. If necessary, IdP authenticates User.
5. IdP generates **authorisation response** containing **code** (an authorisation code), and the **state** value, and sends it to UA.
6. UA redirects response to RP.
7. RP sends **access token request** to IdP (directly) containing **code** and **client_secret** (shared by IdP and RP).
8. IdP checks request values and responds to RP with **access token**.
9. RP uses **access token** to retrieve user attributes (specifically the IdP user identifier) from IdP.
OAuth 2.0 – identity federation I

- OAuth 2.0 specs do not provide a standardised approach to identity federation.
- Not surprising given OAuth 2.0 not really designed for SSO.
- Commonly used (ad hoc) means of federation involves RP binding the user-RP account with the user-IdP account, using the unique user ID generated by the IdP.
- The IdP account ID is fetched from the IdP in step 9 of previous slide.

OAuth 2.0 – identity federation II

- After receiving the access token (step 8), RP retrieves the user-IdP account ID.
- RP then binds user-RP account ID to user-IdP account ID.
- One method of achieving binding is:
 - user initiates binding after logging in to RP;
 - user required to log in to IdP;
 - user grants permission for binding;
 - RP completes binding process.
Wide use

- In the relatively short time since OAuth 2.0 specifications published, it has become widely used as basis for SSO (e.g. by Facebook).
- Particularly big uptake in China:
 - some Chinese language RPs support as many as eight (OAuth-based) IdPs;
 - at least ten major websites offer OAuth 2.0-based IdP services.
Known issues

• OAuth 2.0 has been critically examined by a number of authors.
 – Frostig & Slack (2011) found a Cross-Site Request Forgery (XSRF) attack in the Implicit Grant flow of OAuth 2.0.
 – Wang, Chen & Wang (2012) found a logic flaw in a range of SSO implementations.
 – Sun & Beznosov (2012) found flaws in OAuth 2.0 implementations.

• However, no published studies of real-life security of Chinese-language sites, despite large numbers and wide use of OAuth 2.0.

Attack countermeasures

• OAuth 2.0 specifications recommend use of state parameter in authorisation request & response to protect against XSRF attacks.
• For it to work state must be non-guessable.
• Otherwise attacker could include guessed value in a XSRF-generated fraudulent authorisation response.
• We observed that many real-world RPs either omit state or use it incorrectly.
Scope of attacks

• New attacks we have discovered are more powerful than previously known attacks.
• Attacks using XSRFs enable false identity federations, so that an attacker can log in at will to victim accounts.
• Attacks do not require victim cooperation (except to visit a malicious website at some point prior to attempting a federation).
General approach

- Investigated properties of range of real-world implementations of OAuth 2.0-based SSO.
- Looked at browser-relayed messages (BRMs) between RPs and IdPs.
- Used Fiddler (open source tool) to capture BRMs, and developed Java parser for BRMs.
- Focussed on attacks on the identity federation ‘binding’ process.

Scope of study

- We looked at 60 Chinese RPs supporting federation-based SSO using OAuth 2.0.
- Of these 14 did not support the vulnerable binding method.
- Of the remaining 46, a total of 21 (i.e. nearly half) were found to be vulnerable to XSRF-based false binding attacks.
Renren Network

- Renren is a social networking site with 320 million users – the ‘Facebook of China’.
- It supports several OAuth 2.0-based IdPs for SSO, including Baidu and China Mobile (both major sites).
- We examined federation interactions between Renren and both Baidu and China Mobile.

Ctrip

- Ctrip is a China-focused travel agency with 60 million members.
- Ctrip supports eight OAuth 2.0-based SSO IdPs, including Renren, Wangyi, Taobao, MSN and Sina.
- We looked at federation interactions between Ctrip and Renren.
Renren-Baidu binding attack 1

- Suppose user logged in to Renren (RP) wants to bind Renren account to Baidu (IdP) account.
- Renren generates an auth request and redirects UA (user browser) to Baidu.
- Renren does not include state in auth request, i.e. no means of binding the auth request to the subsequent auth response.
- After authenticating the user, Baidu returns an auth response containing code (via the UA) – the UA adds cookies containing session ID.
- Renren uses code to get access token from Baidu, and then uses the access token to retrieve the Baidu account ID.
- Finally Renren binds its account ID to the Baidu account ID.
Renren-Baidu binding attack II

- Because no state value, attacker could replace the code in the auth response with a code generated by Baidu for a separate attacker-initiated interaction.
- Then the user ID that Renren later retrieves from Baidu will be attacker’s ID not the user’s ID.
- This means Renren will bind the attacker’s Baidu ID with the user’s Renren ID.
- Catastrophe!
- We tested this using a XSRF approach to perform the substitution, and it worked.

Renren-China Mobile binding attack

- In this case, both auth request and auth response contain a state value.
- However, state value is the same for multiple requests and responses (always ‘9’).
- Thus an attack almost identical to the Renren-Baidu attack works, enabling binding of attacker’s China Mobile account to victim’s Renren account.
Generic Ctrip binding attack I

- Looked at Renren-Ctrip binding process (Renren acting as IdP).
- No state value in auth request.
- However, code substitution attack did not work (not sure why).
- We observed that the initial HTTP request contained a Uid (a Ctrip-generated user ID).
- We speculated that if we replaced the Uid in an attacker-generated request with a victim’s Uid, then it might be possible to force Ctrip to bind the attacker’s IdP account to the victim’s Ctrip account.

Generic Ctrip binding attack II

- We tried it and it worked!
- We analysed this further, and found it would work with many IdPs working with Ctrip.
- The Ctrip implementation contained logic flaws.
- Getting Uid values for victims is simple using the Ctrip user forum.
- In all our attacks we used specially created accounts (no ‘real’ accounts were hacked).
Information Security Group

Agenda

• Single sign-on and OAuth 2.0
• Motivation
• Two case studies
• Security analyses
• Concluding remarks

Information Security Group

Disclosures

• We notified all the affected RPs and IdPs earlier this year, several months before publication of our results.
• We got a mixed response – most major sites fixed the problems and thanked us.
• However, some sites denied that our attacks were a problem ...
Reasons for problems

• Perhaps the single most important reason that these attacks arise is because of the lack of standards for OAuth 2.0-based SSO and identity federation.

• This is now partly addressed by OpenID Connect, which builds a standardised identity layer on top of OAuth 2.0.

Recommendations

• In absence of clear standards, guidance from IdPs critical.

• Some IdPs did not clarify use of state, and did not even include state in their sample code.

• Consequences of not using state value were not made clear to RPs.

• Have published detailed list of recommendations for IdPs and RPs.
Publication

• The main results of the study have been published at ISC 2014: