Addressing user privacy issues in mobile telephony

Chris Mitchell
www.chrismitchell.net
Acknowledgement

• This talk describes joint work with my PhD student Mohammed Shafiul Alam Khan.

• Actually, Shafi did the work – I just made annoying suggestions.

• Of course, the errors in the talk are down to me …
Agenda

• GSM, 3G and 4G security and privacy
• Threats to privacy
• Previous work and shortcomings
• Using multiple IMSIs
• Managing multiple IMSIs
• Concluding remarks
Agenda

- GSM, 3G and 4G security and privacy
- Threats to privacy
- Previous work and shortcomings
- Using multiple IMSIs
- Managing multiple IMSIs
- Concluding remarks
GSM – the foundation

• GSM, the European and subsequently global 2G standard contains a suite of security (and to a lesser extent privacy) features.

• These have been extended and improved in both 3G and then 4G, but the basic idea remains the same.

• All based on a secret key shared by the subscriber identity module (SIM) and the issuing network (home network).

• Allows security to be provided even when a phone accesses a different network (visited network).
GSM – authentication

- GSM uses a challenge-response authenticated key establishment (AKE) protocol.
- Uses symmetric cryptography and a secret key shared by home network and SIM.
- Secret session key established is used to provide channel confidentiality using symmetric encryption.
- Design of AKE allows SIM issuer (home network) to keep control of AKE algorithms, and not divulge long-term key shared with SIM to visited network.
3G security

• In GSM the authentication was one-way and only one session key was established.

• In 3G:
 – mutual authentication added;
 – 2 session keys established: for encryption of channel data & for MACing channel commands;
 – USIM replaces SIM;
 – structure of protocol (AKE) unchanged, i.e. home network retains control of key and algorithms.
3G privacy

- GSM, 3G and 4G all have essentially the same privacy feature (called user identity confidentiality).
- Every (U)SIM has a permanent identifier – the IMSI.
- Routine use of this across the radio link (air interface) would enable users to be easily tracked.
- So instead the visited network generates a temporary identity (TMSI) for every phone – a kind of pseudonym.
- TMSI changes regularly and is sent to mobile encrypted (so new/old TMSIs cannot be linked).
3G AKA – overview

• The 3G AKA protocol involves two messages:
 – one containing a challenge from the network to the mobile, and
 – a response from the mobile to the network.

• Both messages are computed as a function of the long-term secret key K shared by the USIM and the home network.

• We focus here on 3G, but 4G is very similar.
3G AKA – message 1

• The first message contains \textit{RAND} and \textit{AUTN} (both 128 bits long):
 – \textit{RAND} is a random challenge;
 – \textit{AUTN} is made up of three sub-fields:
 • \textit{SQN}⊕\textit{AK} (48 bits) – where \textit{SQN} is a sequence number used to enable the mobile to distinguish fresh from replayed challenges, and \textit{AK} is stream cipher keystream generated as a function of \textit{K} and \textit{RAND}.
 • \textit{AMF} (16 bits) – out of scope for this talk;
 • \textit{MAC} (64 bits) – a MAC computed as a function of \textit{K}, \textit{RAND}, \textit{SQN}⊕\textit{AK} and \textit{AMF}.
3G AKA – processing message 1

- The USIM performs the following steps:
 - checks MAC using its stored key K;
 - decrypts (using K) & checks SQN (and updates its stored sequence number) – authentication is now complete;
 - computes two session keys: IK (integrity key) and CK (confidentiality key) from K and $RAND$;
 - computes a response RES as a function of K and $RAND$ and sends it back to the network.

- All these computations are performed inside the USIM (K never leaves the USIM), although CK and IK are exported to the phone.
3G AKA – generating challenges

- Visited network doesn’t know K or the current sequence #, so cannot generate challenges.
- The home network generates $RAND$ and all the dependent values ($AUTN$, CK, IK and RES) using K and its stored sequence number.
- It sends 5-tuples ($RAND$, $AUTN$, CK, IK, RES) to visited networks ‘on request’.
- In fact it sends small ‘batches’, elements of which must be used in the right order.
Agenda

- GSM, 3G and 4G security and privacy
- Threats to privacy
- Previous work and shortcomings
- Using multiple IMSIs
- Managing multiple IMSIs
- Concluding remarks
Range of issues

• Despite use of the TMSI, there are a number of ways in which an attacker can track individual phones.

• We outline some of these ...
Newly arrived phones

• When a phone arrives in a network, e.g. as a subscriber moves from one country to another, the new network may have no way of knowing the TMSI allocated by the previously visited network.

• Thus the network needs a way of requesting a phone to send its IMSI across the air interface.

• This request is not authenticated (no way to know which key to use), and hence can be spoofed.

• This issue has been documented from the early days of GSM.
Paging message attack

• In 3G, the IMSI *Paging* message allows a network to try to work out whether a phone is present in a particular area.

• The message can contain an IMSI or TMSI, and is not authenticated.

• If a phone detects a message with its IMSI or TMSI it sends a response (containing its current TMSI).

• This allows an IMSI to be linked to a TMSI.
AKA threats 1

• In GSM, the challenge sent by a network to a phone as part of AKA is not authenticated, and will always elicit a response from a phone.

• If the same challenge is sent twice, the same response will result (since response is computed using a fixed secret key).

• That is, the response for a fixed challenge characterises a phone (actually the SIM).

• Hence an attacker can send a challenge to a phone addressed by its TMSI, and determine whether it is the same as a previously monitored phone.
AKA threats II

• The GSM problem seems to go away in 3G, since the challenge is authenticated (and ‘old’ challenges will not be responded to).

• Arapinis et al. (2012) showed that 3G AKA protocol error messages can be used to break privacy just like the GSM problem.

• Different error messages result from:
 – an incorrect challenge (computed using the wrong key);
 – an ‘old’ but valid challenge.

• These error messages reflect the order in which checks are done by the USIM.
Error message attack

Steps:
1. Check MAC
2. If successful then check SQN
3. Otherwise send MAC error

Stored Authentication Challenge
(Includes SQN, MAC)
Error message attack II

Stored Authentication Challenge
(Includes SQN, MAC)

Send MAC Error

Mobile subscriber is not the intended one
Error message attack III

Stored Authentication Challenge
(Includes SQN, MAC)

Send SQN Error

Mobile subscriber is identified
Information Security Group

Agenda

• GSM, 3G and 4G security and privacy
• Threats to privacy
• Previous work and shortcomings
• Using multiple IMSIs
• Managing multiple IMSIs
• Concluding remarks
Need for IMSI transmission

• Given a TMSI will not always be available, there is a fundamental need for the radio transmission of a user identifier which a home network can recognise.

• This could be an IMSI or some other user-specific identifier.
Encrypting the IMSI

• Perhaps the most ‘obvious’ solution is to encrypt the IMSI when it is sent over the air interface.

• However, unless asymmetric encryption is used, there is no obvious key to use.

• Introducing asymmetric cryptography would add significant complexity, which is why such a solution was not adopted in 3G.
Protocol changes I

• A considerable number of papers have been published proposing changes to the air interface protocol, typically involving IMSI encryption.

• However, deploying such protocol changes presents huge practical difficulties, since existing phones and networks would not interoperate with the new system.

• Essentially it would mean a completely new system, which is not likely to happen.
Protocol changes II

• Arapinis et al. (2012) proposed a suite of changes to address the newly-identified AKA error message issue, as well as other issues with user identity confidentiality.

• We have analysed these carefully, and identified a number of practical issues with their implementation (over and above general problem of deploying a changed protocol).
What can be done?

• There would seem to be two fundamental problems in trying to fix user privacy:
 – dealing with the need to transfer the IMSI;
 – addressing the AKA error message issue.

• The latter is simple to fix – namely, never send one of the error messages (i.e. use one error message to cover both cases).

• We are proposing a new approach to the IMSI compromise problem, namely to make IMSI compromise less serious ...
Agenda

• GSM, 3G and 4G security and privacy
• Threats to privacy
• Previous work and shortcomings
• Using multiple IMSIs
• Managing multiple IMSIs
• Concluding remarks
Use of the IMSI

• Currently, the IMSI is fixed for life of the USIM.
• IMSI is a 15 decimal digit number, of which:
 – first 3 form the mobile country code;
 – next 2/3 identify network (country-dependent)
 – last 9/10 identify the subscriber.
• First 5/6 digits enable visited network to learn the home network.
• Last 9/10 digits enable the home network to uniquely identify the user account, and hence the shared secret key and other user information.
Multiple IMSIs

• There is nothing to prevent a USIM being equipped with two or more IMSIs.
• The USIM could decide which one to use when.
• We have identified a way in which the USIM can signal to the phone that the phone should re-read USIM data, including the IMSI.
• When the IMSI changes, a phone will simply appear as a newly arrived phone to the visited network.
• The home network will need multiple pointers to the same user account in its database.
Transparency

• Such use of multiple IMSIs would give improved identity confidentiality without changing the air interface protocol in any way.

• No changes needed to phones or networks.

• Only changes would be to:
 – home network database;
 – USIMs – which are issued by the home network.
Fixed multiple IMSIs

• One way in which this could be done would be for the USIM to be:
 – pre-equipped with a number of IMSIs, and
 – programmed to switch IMSIs, e.g. at random.

• Could be offered as a value-added service.

• Advantage is that no signalling is required between USIM and home network.

• Disadvantages are:
 – IMSIs are in limited supply;
 – attacker might eventually learn all the IMSIs for a user.
Information Security Group

Predefined multiple IMSIs – Scenario one

Activities:
- Triggering an IMSI change
- Enforce an IMSI change

- Pre-equipped with a number of IMSIs and some additional logic
- Include logic to decide when to change an IMSI

- All pre-equipped IMSIs are linked to a subscriber account in home network database

Home Network
Predefined multiple IMSIs – Scenario two

Activities:
- Decode signal
- Enforce an IMSI change

Activities:
- Embed signal
- Send to USIM

Activities:
- All pre-equipped IMSIs are linked to a subscriber account in home network database
- Equipped with additional logic to decide when to change an IMSI

- Pre-equipped with a number of IMSIs and some additional logic
Dynamic multiple IMSIs

• Disadvantages of fixed multiple IMSIs could be avoided by having the home network change the IMSI for a USIM on a regular basis (only two in use at any time).

• However, need a way for the home network to send a message to the USIM without changing the air interface protocol.

• Such signalling is not supported by current protocol specs, so we have to get smart!
Agenda

• GSM, 3G and 4G security and privacy
• Threats to privacy
• Previous work and shortcomings
• Using multiple IMSIs
• Managing multiple IMSIs
• Concluding remarks
The signalling problem

• We need a way for the home network to send a message to a USIM containing a new IMSI.

• This signalling method must be:
 – transparent to the visited network;
 – transparent to the mobile phone;
 – engineered in such a way that the system is resilient to lost messages, i.e. so that there is no way a USIM and the home network can become desynchronised.
Candidates for signalling channel

- The only data sent directly from the home network to the USIM (as opposed to the phone) is *RAND* and *AUTN*.

- *AUTN* already has meaning, and hence cannot convey any further information.

- This leaves *RAND*, the only requirement for which would appear to be that the same value should never be used twice with a particular USIM.
Embedding an IMSI in RAND 1

• The ‘business part’ of an IMSI contains 9 or 10 decimal digits, i.e. it can be encoded in at most 34 bits (we propose the use of BCD for simplicity resulting in at most 40 bits).

• We propose encrypting the IMSI as a function of K and SQN, padding it to a 64-bit string with random bits, and appending a 64-bit $SMAC$ (a MAC computed as a function of SQN and SQN) to obtain the RAND.

• This is used to generate a 5-tuple in the normal way.
Embedding an IMSI in RAND II

- USIM can distinguish between a random $RAND$ and one holding a new IMSI by always computing the $SMAC$ (from SQN and K) and checking if it matches last 64 bits of $RAND$.
- Probability of a false match is infinitesimal.
- Home network keeps sending ‘update IMSI’ $RAND$ values until evidence of use of the new IMSI occurs.
- Hence desynchronisation is not possible.
Embedding an IMSI in RAND III

• Note that the integrity of the IMSI-embedded RAND is guaranteed by the MAC in AUTN.

• This prevents denial of service attacks.

• The IMSI-embedded RAND is made up of:
 – an encrypted BCD-encoded IMSI;
 – some random padding; and
 – a MAC.

• Hence should be indistinguishable from a random string, if algorithms are sound.
Modifiable multiple IMSIs

Activities:
- Decode signal
- Decode new IMSI
- Enforce an IMSI change

Modified with additional logic

Home Network

Activities:
- Encode new IMSI
- Embed signal
- Send to USIM

- Include logic to decide when to send a new IMSI
Agenda

• GSM, 3G and 4G security and privacy
• Threats to privacy
• Previous work and shortcomings
• Using multiple IMSIs
• Managing multiple IMSIs
• Concluding remarks
Related work

• Sung, Levine and Liberatore (2014) also described a system which allows frequent IMSI changes.
• However, their system involves active involvement of the phone and a virtual USIM.
• Requires use of a virtual network operator, and addresses a network model in which even ‘home’ operator is untrusted.
• Highly complex, and not clear whether would ever meet licensing rules.
Ongoing work

• We need to verify that a phone really can change IMSI easily.
• We (well, Shafi actually) are currently performing experiments to verify this, the results of which will be included in the final paper.
• We also hope to verify the correctness of all aspects of the revised protocol specification for the home network and the USIM.
Papers

Thank you!

• Any questions ...?