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1.

Introduction: What are orientable sequences?
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I'm sure you're familiar with de Bruijn sequences, i.e. infinite periodic Chris | Mitchel
sequences of elements from {0,1,...,k — 1} in which every possible
k-ary n-tuple occurs exactly once in a period.

The period must be k", and there are many known methods of
construction.

Earliest known reference to constructing (and enumerating) such
sequences is due to Sainte-Marie (1894), but better known work is by
de Bruijn (1946) and Good (1947).

Examples for k = 2 are: [0011] (n = 2), and [00010111] (n = 3).

There are many applications, for example in stream ciphers, position
location, and genome sequencing.

De Bruijn sequences are examples of n-window sequences, periodic -
ﬂ}é
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sequences in which any n-tuple occurs at most once in a period.
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Orientable sequences
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An orientable sequence (an OSk(n)) is a k-ary n-window sequence
with the added property that an n-tuple occurs at most once in a
period of a sequence or its reverse.

First introduced in 1992, they have potential application in certain
position location applications.

For the binary case, a simple example for n =5 has period 6 — a
single period is [001011].

The sequence and its reverse contain twelve distinct 5-tuples: 00101,
00110, 01001, 01011, 01100, 01101, and the complements of these
5-tuples.

Examples for k = 3 are: [012] (n = 2) and [001201122] (n = 3).
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. Upper bounds on the period
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Since any n-tuple can only occur once in a period in either direction,
and symmetric n-tuples cannot occur, a trivial bound on the period of

an OSk(n) |S Bounds
kN — kl(n+1)/2]

2
However, apart from when n = 2 and k is odd, this bound is not sharp.

The binary case is different from k > 2 — in particular, constant
(n —1)-tuples and (n — 2)-tuples cannot occur in a binary sequence,
whereas they can for k > 2.

This means that an 0S,(n) cannot exist for n < 5.

Dai, Martin, Robshaw & Wild (1993) gave a bound for the binary case

which is significantly sharper than the trivial bound. A
jol
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The Dai-Martin-Robshaw-Wild upper bound (k = 2)

Suppose S is an 0S;(n) (n > 5). Then the period of S is at most:

201 _41/9 x2"?71 1 n/3 +16/9
271 _31/9 x 2-1/2 1 n/3 +19/9
271 _41/9 x2"/271 41 n/6 +20/9
2"-1_31/9 x20-1/2 1 n/6 4 43/18

n=0 (mod4
n=1 (mod4
n=2 (mod4

)
)
)
n=3 (mod4)
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Dai et al. upper bound values (k = 2)
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Order (n) Maximum period Maximum period (simple bound) Bounds
> 6 14
6 17 28
7 40 60
8 96 120
9 206 248
10 443 496

The naive bound is given for comparison purposes.
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A general bound
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» We can establish a bound for the k > 2 case which is a little sharper e enet
than the trivial bound (Alhakim, Mitchell, Szmidt & Wild, 2024).

> Suppose that S = (s;) is an OSk(n) (k > 2, n > 2). Then the period of S
is at most:

Bounds

(k" — k[n/21 _ g I0=1)/21 4 ky/2 if k is odd,
(k" — k721 _ky/2 if k is even.

Further, if k is odd and n > 6 then the period of S is at most

(k" —2k"/2 — k(n —2)/24-2k)/2 if nis even,
(k" — k(12 k(=12 4k 4 k2)/2 if nis odd.
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Bound values (k > 2)

Order(n) k=3 k=4 k=5 k=06 k=17
2 3 4 10 12 21
3 9 22 50 87 147
4 33 118 290 627 1155
5 105 478 1490 3777 8211
6 336 2014 7680 23217 58464
7 1032 8062 38640 139317 410256
8 3189 32638 194630 839157 2879835
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3. Binary sequence constructions
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» The first published construction method for orientable sequences is
due to Dai et al. (1993).

> It involves joining orientable cycles of length n, where the cycles Constructions
come in pairs made up of a cycle and its reverse. (binary case)

» Dai et al. showed using a graph-theoretic argument that is existential
rather than constructive that one of every pair of these cycles can be
joined to give an orientable sequence.

» The method produces sequences which have asymptotically optimal
period.

> As far as | am aware, nothing further was published on these
sequences for almost 40 years; however, since 2022, a number of

new results have been established. :
i
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The de Bruijn digraph
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A construction method for binary orientable sequences (Mitchell and
Wild, 2022) relies on a graph homomorphism first described by
Lempel |n 1970 Constructions

The de Bruijn-Good graph G, is a directed graph with vertex set e
{0,1,...,k—1}".

An edge connects (ag,ai,...,an-1) to (bo,b1,...,bp_1) iff @a; 1 = b; for
everyi(0<i<n-2).

If we identify an edge from (ag, a1,...,an_1) to (bo,b1,...,bp_1) with

the (n + 1)-tuple (ap,ai,...,an—1,bn_1), then a de Bruijn sequence of

order n + 1 corresponds to an Eulerian circuit in G, .

There are, of course, efficient algorithms for finding such circuits.
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The Lempel Homomorphism
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» The Lempel D-function, originally defined only for k = 2, maps G, , to
Gn* 1,2 onstructions

» D maps any binary n-tuple (ag,a1,...,an—1) to (binary case)
(a]_ —dg,dp —ad1,...,dpn_1 — a,,_z).

» D is a graph homomorphism from G, ; onto G,_1 >.

» We can extend the notation to allow D to be applied to periodic binary
sequences, so D maps the set of periodic binary sequences to itself.

> If S is a sequence of period m, then D(S) will clearly have period
dividing m.
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Inverse Lempel and de Bruijn sequences
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Can also define D~! where if S is a periodic binary sequence then Chris J Mitchell
D~%(S) is set T of all binary sequences such that D(T) = S.

If S is an n-window sequence then it is straightforward to see that any

(n + 1)-tuple will appear at most once in a period of one of the i
sequences in D~1(S).

In the special case where S is a de Bruijn sequence of order n, then

D~1(S) contains a complementary pair of sequences, both of period

2", in which every (n + 1)-tuple appears exactly once in a period of

one of the sequences.

As Lempel showed, one of the two sequences will contain the
(n+ 1)-tuple (0101...), and the other will contain the (n + 1)-tuple
(1010...), and hence they both contain the n-tuple (0101...).

They can thus be joined to form a de Bruijn sequence of order n + 1. ﬂg
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Inverse Lempel and orientable sequences |
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» The Lempel homomorphism can also be applied to generate
orientable sequences (Mitchell & Wild, 2022).

> If S is an OS;(n) of period m and weight w, then D~%(S) contains
either an 0S,(n + 1) of period 2m (if w is odd) or a pair of sequences
of period m which are ‘collectively’ orientable (if w is even).

» However, if w is odd, the weight of the OS,(n + 1) will have weight m,
and so even if w is odd and m is odd, the homomorphism can only be
applied recursively twice before yielding sequences in pairs rather
than the single long sequence desired.

onstructions
(binary case)
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Inverse Lempel and orientable sequences Il
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» The solution is as follows. Suppose S is an orientable sequence of
order n containing exactly one occurrence of 174, If S has even onstructions
weight then leave it alone; otherwise change 17— to 173 to make it (binary cese)
have odd weight (and the result is still orientable).

> Given a suitable starter sequence S that is an OS¢(n — 1), can
guarantee that D~1(S) will be an OSk(n) containing exactly one
occurrence of 174, and can repeat indefinitely.

» This gives a simple recursive method of generating orientable
sequences with large periods.
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4. General sequence constructions

> As described by Alhakim et al. (2024), can use the inverse Lempel
homomorphism to go from an OS,(n) of period m to an OS,(n + 1) of
period km.

» However, it is non-trivial to ensure that D~ yields a single sequence
of period km rather than a set of (n + 1)-tuple-disjoint sequences with
periods summing to km.

» Moreover, some variants of the (inverse) Lempel homomorphism only
yield ‘negative’ orientable sequences, in which the collection of all
n-tuples and reverse negative n-tuples in a period are all distinct.

» Various approaches have been devised to fix this in recent work by
Gabri¢ & Sawada (2024) and Mitchell & Wild (2024). Gabri¢ & Sawada
showed how to join the multiple cycles produced, and Peter Wild and |
constructed ‘starter sequences’ with special properties enabling
repeated use of the Lempel homomorphism.

» Sequences produced by Gabri¢ & Sawada have asymptotically
maximal period.
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A new construction
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» The following simple method of construction (Mitchell & Wild, 2025 Chris J Mitchell
(unpublished)) involves a subgraph A, x of the de Bruijn graph G, «.
» As for G, , the vertices are the k-ary n-tuples.
» An edge connects (ag,a1,...,an_1) to (bg,b1,...,by_1) iff
> a;,1 = b; forevery i (0 <i<n-—2)(asinthe de Bruijn graph); and @(Coenns;:‘cggges)
> bp1—aoc{1,2,...,[(k—1)/2].} ’
> Every vertex has in-degree and out-degree [(k — 1)/2]|. If kK > 5 then
Ak is connected.
» Analogously to de Bruijn sequences, an Eulerian circuit in A, , will
yield an OSg(n + 1) of period k"|(k — 1)/2] (for kK > 5), which is greater
then (k — 1)/k times the upper bound for kK odd, and greater then
(k — 2)/k times the upper bound for k even.

» In factif n=2 or n =3 and k odd, the period meets the upper bound. ﬂg
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. Open questions

Apart from a few small values of n and k, there is a gap between the
period of the longest known OS¢ (n) and the best upper bound.

Also, for a few small values of n and k, exhaustive search has shown
that the maximum period is strictly less than the upper bound.
This suggests further research is needed on two main problems:

> tightening the upper bounds;
» constructing sequences with periods closer to the upper bounds;

so that (ideally) there is no gap.
Eliminating the gap altogether seems difficult.
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Largest known periods for the binary case (k = 2)
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Order (n) Maximum period Maximum period (Dai et al. bound)

5 6 6

6 16 17

7 36 40

8 92 96 |

9 174 206 17 JOpen questions
10 416 443

> Figures in bold represent maximal lengths as verified by search.

> For further details see the excellent website maintained by Joe
Sawada: http://debruijnsequence.org/db/orientable

g v |
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Largest known periods for k > 2
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n k=3 k=4 k=5 k=6 k=17
2 3(3) a4) 10 (10) 12 (12) 21 (21)
3 9 (9) 20 (22) 50 (50) 72 (87) 147 (147)
4 30 (33) 84 (118) 275 (290) 522 (627) 1127 (1155)
5 90 (105) 368 (478) 1385 (1490) 3360 (3777) 7756 (8211)
6 285 (336) 1608 (2014) 7155 (7680) 21150 (23217) 56049 (58464)
7 879(1032) 7308 (8062) 36890 (38640) 135450 (139317) 403389 (410256) 10 )open questions

8 2688(3189) 30300 (32638) 187980 (194630) 821940 (839157) 2844408 (2879835)
» Upper bound values are given in brackets.

» Figures in bold represent maximal lengths.

> As of 6/2/25 | believe | can increase the 72 forn =3, k =6 to 78.
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Other resources

> Joe Sawada’s page: http://debruijnsequence.org/db/orientable
» The Combinatorial Object Server: http://combos.org/
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