Constructing orientable sequences (Recent) results and open questions

Chris | Mitchell

Royal Holloway, University of London

me@chrismitchell.net
www.chrismitchell.net

February 2025

1. Introduction: What are orientable sequences?

- ▶ I'm sure you're familiar with de Bruijn sequences, i.e. infinite periodic sequences of elements from $\{0,1,...,k-1\}$ in which every possible k-ary n-tuple occurs exactly once in a period.
- ▶ The period must be k^n , and there are many known methods of construction.
- ► Earliest known reference to constructing (and enumerating) such sequences is due to Sainte-Marie (1894), but better known work is by de Bruijn (1946) and Good (1947).
- Examples for k = 2 are: [0011] (n = 2), and [00010111] (n = 3).
- ► There are many applications, for example in stream ciphers, position location, and genome sequencing.
- ▶ De Bruijn sequences are examples of *n*-window sequences, periodic sequences in which any *n*-tuple occurs at most once in a period.

Constructing orientable sequences

Chris J Mitchell

Introduction

Bounds

Constructio

Constructions

nen auestions

pen questions

terature etc

Orientable sequences

- An orientable sequence (an $\mathcal{OS}_k(n)$) is a k-ary n-window sequence with the added property that an n-tuple occurs at most once in a period of a sequence or its reverse.
- ► First introduced in 1992, they have potential application in certain position location applications.
- ▶ For the binary case, a simple example for n = 5 has period 6 a single period is [001011].
- ▶ The sequence and its reverse contain twelve distinct 5-tuples: 00101, 00110, 01001, 01011, 01100, 01101, and the complements of these 5-tuples.
- **Examples for** k = 3 are: [012] (n = 2) and [001201122] (n = 3).

Constructing orientable sequences Chris I Mitchell

.....

Introduction

Bounds

Constructions
(binary case)

Constructions (general case)

pen questions

iterature etc

2. Upper bounds on the period

Since any n-tuple can only occur once in a period in either direction, and symmetric n-tuples cannot occur, a trivial bound on the period of an $\mathcal{OS}_k(n)$ is

$$\frac{k^n-k^{\lfloor (n+1)/2\rfloor}}{2}.$$

- ▶ However, apart from when n = 2 and k is odd, this bound is not sharp.
- ▶ The binary case is different from k > 2 in particular, constant (n-1)-tuples and (n-2)-tuples cannot occur in a binary sequence, whereas they can for k > 2.
- ▶ This means that an $OS_2(n)$ cannot exist for n < 5.
- ▶ Dai, Martin, Robshaw & Wild (1993) gave a bound for the binary case which is significantly sharper than the trivial bound.

orientable sequences

Chris J Mitchell

Introduction

3)Bounds

(binary case)

general case)

Open questions

iterature etc.

The Dai-Martin-Robshaw-Wild upper bound (k = 2)

Suppose S is an $\mathcal{OS}_2(n)$ (n > 5). Then the period of S is at most:

$$2^{n-1}-41/9\times 2^{n/2-1}+n/3+16/9 \quad \text{if} \quad n\equiv 0\pmod 4 \\ 2^{n-1}-31/9\times 2^{(n-1)/2}+n/3+19/9 \quad \text{if} \quad n\equiv 1\pmod 4 \\ 2^{n-1}-41/9\times 2^{n/2-1}+n/6+20/9 \quad \text{if} \quad n\equiv 2\pmod 4 \\ 2^{n-1}-31/9\times 2^{(n-1)/2}+n/6+43/18 \quad \text{if} \quad n\equiv 3\pmod 4 \\ \end{cases}$$

Constructing orientable sequences

Chris I Mitchell

Bounds

Dai et al. upper bound values (k = 2)

Order (n)	Maximum period	Maximum period (simple bound)
5	6	14
6	17	28
7	40	9
8	96	120
9	206	248
10	443	496

The naive bound is given for comparison purposes.

Constructing orientable sequences

Chris J Mitchell

- Introduction

5 Bounds

Constructions (binary case)

(general case)

Open question

Literature etc

A general bound

- We can establish a bound for the k > 2 case which is a little sharper than the trivial bound (Alhakim, Mitchell, Szmidt & Wild, 2024).
- ▶ Suppose that $S = (s_i)$ is an $\mathcal{OS}_k(n)$ ($k \ge 2$, $n \ge 2$). Then the period of S is at most:

$$(k^n - k^{\lceil n/2 \rceil} - k^{\lceil (n-1)/2 \rceil} + k)/2$$
 if k is odd,
 $(k^n - k^{\lceil n/2 \rceil} - k)/2$ if k is even.

Further, if k is odd and $n \ge 6$ then the period of S is at most

$$(k^n - 2k^{n/2} - k(n-2)/2 + 2k)/2$$
 if n is even, $(k^n - k^{(n+1)/2} - 2k^{(n-1)/2} + k + k^2)/2$ if n is odd.

orientable sequences Chris I Mitchell

ntroduction

6 Bounds

Constructions (binary case)

general case)

iterature etc

Literature et

Bound values (k > 2)

Order (n)	k = 3	k = 4	k = 5	k = 6	k = 7
2	3	4	10	12	21
3	9	22	50	87	147
4	33	118	290	627	1155
5	105	478	1490	3777	8211
6	336	2014	7680	23217	58464
7	1032	8062	38640	139317	410256
8	3189	32638	194630	839157	2879835

Constructing orientable sequences

Chris J Mitchell

7 Bounds

3. Binary sequence constructions

- ▶ The first published construction method for orientable sequences is due to Dai et al. (1993).
- lt involves joining orientable cycles of length n, where the cycles come in pairs made up of a cycle and its reverse.
- Dai et al. showed using a graph-theoretic argument that is existential rather than constructive that one of every pair of these cycles can be joined to give an orientable sequence.
- ▶ The method produces sequences which have asymptotically optimal period.
- ▶ As far as I am aware, nothing further was published on these sequences for almost 40 years; however, since 2022, a number of new results have been established.

sequences Chris I Mitchell

Constructions (binary case)

The de Bruijn digraph

- ▶ A construction method for binary orientable sequences (Mitchell and Wild, 2022) relies on a graph homomorphism first described by Lempel in 1970.
- \triangleright The de Bruijn-Good graph $G_{n,k}$ is a directed graph with vertex set $\{0,1,\ldots,k-1\}^n$.
- ▶ An edge connects $(a_0, a_1, ..., a_{n-1})$ to $(b_0, b_1, ..., b_{n-1})$ iff $a_{i+1} = b_i$ for every i (0 < i < n – 2).
- ▶ If we identify an edge from $(a_0, a_1, \dots, a_{n-1})$ to $(b_0, b_1, \dots, b_{n-1})$ with the (n+1)-tuple $(a_0, a_1, \dots, a_{n-1}, b_{n-1})$, then a de Bruijn sequence of order n+1 corresponds to an Eulerian circuit in $G_{n,k}$.
- ▶ There are, of course, efficient algorithms for finding such circuits.

sequences

Chris I Mitchell

Constructions

(binary case)

The Lempel Homomorphism

- ▶ The Lempel D-function, originally defined only for k = 2, maps $G_{n,2}$ to $G_{n-1,2}$.
- \triangleright D maps any binary n-tuple $(a_0, a_1, \dots, a_{n-1})$ to $(a_1-a_0,a_2-a_1,\ldots,a_{n-1}-a_{n-2}).$
- D is a graph homomorphism from $G_{n,2}$ onto $G_{n-1,2}$.
- We can extend the notation to allow D to be applied to periodic binary sequences, so D maps the set of periodic binary sequences to itself.
- \triangleright If S is a sequence of period m, then D(S) will clearly have period dividing m.

sequences

Chris I Mitchell

Constructions (binary case)

Inverse Lempel and de Bruijn sequences

- \triangleright Can also define D^{-1} where if S is a periodic binary sequence then $D^{-1}(S)$ is set T of all binary sequences such that D(T) = S.
- If S is an n-window sequence then it is straightforward to see that any (n+1)-tuple will appear at most once in a period of one of the sequences in $D^{-1}(S)$.
- In the special case where S is a de Bruijn sequence of order n, then $D^{-1}(S)$ contains a complementary pair of sequences, both of period 2^n , in which every (n+1)-tuple appears exactly once in a period of one of the sequences.
- ▶ As Lempel showed, one of the two sequences will contain the (n+1)-tuple (0101...), and the other will contain the (n+1)-tuple (1010...), and hence they both contain the n-tuple (0101...).
- \triangleright They can thus be joined to form a de Bruijn sequence of order n+1.

sequences

Chris I Mitchell

Constructions

(binary case)

Inverse Lempel and orientable sequences I

- ► The Lempel homomorphism can also be applied to generate orientable sequences (Mitchell & Wild, 2022).
- If S is an $\mathcal{OS}_2(n)$ of period m and weight w, then $D^{-1}(S)$ contains either an $\mathcal{OS}_2(n+1)$ of period 2m (if w is odd) or a pair of sequences of period m which are 'collectively' orientable (if w is even).
- ▶ However, if w is odd, the weight of the $\mathcal{OS}_2(n+1)$ will have weight m, and so even if w is odd and m is odd, the homomorphism can only be applied recursively twice before yielding sequences in pairs rather than the single long sequence desired.

orientable sequences

Chris J Mitchell

ntroductio

12 Construction

(binary case)

(general case)

Open questions

iterature etc

Informatio Depar

Inverse Lempel and orientable sequences II

- ▶ The solution is as follows. Suppose *S* is an orientable sequence of order n containing exactly one occurrence of 1^{n-4} . If S has even weight then leave it alone; otherwise change 1^{n-4} to 1^{n-3} to make it have odd weight (and the result is still orientable).
- ▶ Given a suitable starter sequence S that is an $OS_k(n-1)$, can guarantee that $D^{-1}(S)$ will be an $\mathcal{OS}_{k}(n)$ containing exactly one occurrence of 1^{n-4} , and can repeat indefinitely.
- ► This gives a simple recursive method of generating orientable sequences with large periods.

sequences

Chris I Mitchell

Constructions (binary case)

4. General sequence constructions

- As described by Alhakim et al. (2024), can use the inverse Lempel homomorphism to go from an $\mathcal{OS}_k(n)$ of period m to an $\mathcal{OS}_k(n+1)$ of period km.
- ▶ However, it is non-trivial to ensure that D^{-1} yields a single sequence of period km rather than a set of (n+1)-tuple-disjoint sequences with periods summing to km.
- ► Moreover, some variants of the (inverse) Lempel homomorphism only yield 'negative' orientable sequences, in which the collection of all *n*-tuples and reverse negative *n*-tuples in a period are all distinct.
- ▶ Various approaches have been devised to fix this in recent work by Gabrić & Sawada (2024) and Mitchell & Wild (2024). Gabrić & Sawada showed how to join the multiple cycles produced, and Peter Wild and I constructed 'starter sequences' with special properties enabling repeated use of the Lempel homomorphism.
- Sequences produced by Gabrić & Sawada have asymptotically maximal period.

Constructing orientable sequences

Chris J Mitchell

ntroductio

Bounds

Constructions (binary case)

Constructions (general case)

Open questions
Literature etc.

Information Security

A new construction

- ► The following simple method of construction (Mitchell & Wild, 2025 (unpublished)) involves a subgraph $A_{n,k}$ of the de Bruijn graph $G_{n,k}$.
- \blacktriangleright As for $G_{n,k}$, the vertices are the k-ary n-tuples.
- \blacktriangleright An edge connects $(a_0, a_1, \ldots, a_{n-1})$ to $(b_0, b_1, \ldots, b_{n-1})$ iff
 - ▶ $a_{i+1} = b_i$ for every i (0 ≤ i ≤ n − 2) (as in the de Bruijn graph); and
 - $b_{n-1} a_0 \in \{1, 2, \dots, \lfloor (k-1)/2 \rfloor, \}$
- ▶ Every vertex has in-degree and out-degree $\lfloor (k-1)/2 \rfloor$. If $k \geq 5$ then $A_{n,k}$ is connected.
- Analogously to de Bruijn sequences, an Eulerian circuit in $A_{n,k}$ will yield an $\mathcal{OS}_k(n+1)$ of period $k^n\lfloor (k-1)/2\rfloor$ (for $k\geq 5$), which is greater then (k-1)/k times the upper bound for k odd, and greater then (k-2)/k times the upper bound for k even.
- ▶ In fact if n = 2 or n = 3 and k odd, the period meets the upper bound.

orientable sequences

Chris J Mitchell

ind oddec

Bounds

Constructions (binary case)

(general case)

Open question

iterature etc.

5. Open questions

- \triangleright Apart from a few small values of n and k, there is a gap between the period of the longest known $OS_k(n)$ and the best upper bound.
- \triangleright Also, for a few small values of n and k, exhaustive search has shown that the maximum period is strictly less than the upper bound.
- ▶ This suggests further research is needed on two main problems:
 - tightening the upper bounds:
 - constructing sequences with periods closer to the upper bounds; so that (ideally) there is no gap.
- Eliminating the gap altogether seems difficult.

sequences

Chris I Mitchell

16 Open questions

Largest known periods for the binary case (k = 2)

Order (n)	Maximum period	Maximum period (Dai et al. bound)
5	6	6
6	16	17
7	36	40
8	92	96
9	174	206
10	416	443

- Figures in bold represent maximal lengths as verified by search.
- ► For further details see the excellent website maintained by Joe Sawada: http://debruijnsequence.org/db/orientable

Constructing orientable sequences Chris I Mitchell

troduction

ounas

(binary case)

(general case)

Open questions

terature etc

Largest known periods for k > 2

n	<i>k</i> = 3	k = 4	k = 5	k = 6	k = 7	
2	3 (3)	4 (4)	10 (10)	12 (12)	21 (21)	
3	9 (9)	20 (22)	50 (50)	72 (87)	147 (147)	
4	30 (33)	84 (118)	275 (290)	522 (627)	1127 (1155)	
5	90 (105)	368 (478)	1385 (1490)	3360 (3777)	7756 (8211)	
6	285 (336)	1608 (2014)	7155 (7680)	21150 (23217)	56049 (58464)	
7	879 (1032)	7308 (8062)	36890 (38640)	135450 (139317)	403389 (410256)	
8	2688 (3189)	30300 (32638)	187980 (194630)	821940 (839157)	2844408 (2879835)	

- ▶ Upper bound values are given in brackets.
- Figures in bold represent maximal lengths.
- As of 6/2/25 I believe I can increase the 72 for n = 3, k = 6 to 78.

Constructing orientable sequences

Chris J Mitchell

ntroductio

Bounds

(binary case)

Constructions

18 Open questions

erature etc

6. Literature

- (Mitchell & Wild, 2022): IEEE Trans on Inf Thy 68 (2022) 4782-4789.
- ► (Gabrić & Sawada, 2024): arXiv 2401.14341 and 2407.07029.
- (Mitchell & Wild, 2024): arXiv 2409.00672 and 2411.17273.

Constructing orientable sequences

Chris I Mitchell

19 Literature etc.

Other resources

▶ Joe Sawada's page: http://debruijnsequence.org/db/orientable

► The Combinatorial Object Server: http://combos.org/

Constructing orientable sequences

Chris J Mitchell

ntroductior

Bounds

Construction

(general case)

Open questions

Literature etc.

