New constructions for orientable sequences 5th Pythagorean Conference, Kalamata, 2–6 June 2025

Chris Mitchell and Peter Wild

5th June 2025

1. Introduction: What are orientable sequences?

- ▶ A k-ary de Bruijn sequence of order n is an infinite periodic sequences of elements from $\{0, 1, ..., k-1\}$ in which every possible k-ary n-tuple occurs exactly once in a period.
- ▶ The period must be k^n , and there are many known methods of construction.
- ► Earliest known reference to constructing (and enumerating) such sequences is due to Sainte-Marie (1894), but better known work is by de Bruijn (1946) and Good (1947).
- Examples for k = 2 are: [0011] (n = 2), and [00010111] (n = 3).
- ► There are many applications, for example in stream ciphers, position location, and genome sequencing.
- ▶ De Bruijn sequences are examples of *n*-window sequences, periodic sequences in which any *n*-tuple occurs at most once in a period.

Orientable sequences

- An orientable sequence of order n (an $\mathcal{OS}_k(n)$) is a k-ary n-window sequence with the added property that an n-tuple occurs at most once in a period of a sequence or its reverse.
- ► First introduced in 1992, they have potential application in certain position location applications.
- For the binary case, a simple example for n = 5 has period 6
 a single period is [001011].
- ➤ The sequence and its reverse contain twelve distinct 5-tuples: 00101, 00110, 01001, 01011, 01100, 01101, and the complements of these 5-tuples.
- Examples for k = 3 are: [012] (n = 2) and [001201122] (n = 3).

The de Bruijn digraph

- The de Bruijn digraph is a key tool for analysing and constructing both de Bruijn and orientable sequences.
- ▶ This graph, otherwise known as the de Bruijn-Good graph, $B_k(n)$ is a directed graph with vertex set $\{0, 1, ..., k-1\}^n$.
- An edge connects $(a_0, a_1, \ldots, a_{n-1})$ to $(b_0, b_1, \ldots, b_{n-1})$ iff $a_{i+1} = b_i$ for every $i \ (0 \le i \le n-2)$.
- It is simple to see that $B_k(n)$ is Eulerian, i.e. it is connected and every vertex has in-degree equal to its out-degree.
- If we identify an edge from $(a_0, a_1, \ldots, a_{n-1})$ to $(b_0, b_1, \ldots, b_{n-1})$ with the (n+1)-tuple $(a_0, a_1, \ldots, a_{n-1}, b_{n-1})$, then a de Bruijn sequence of order n+1 corresponds to an Eulerian circuit in $B_k(n)$ which must exist given $B_k(n)$ is Eulerian.
- ► There are, of course, efficient algorithms for finding such circuits.

The Lempel Homomorphism

- ► The Lempel *D*-function, originally defined only for k = 2, maps $B_2(n)$ to $B_2(n-1)$.
- ▶ *D* maps any binary *n*-tuple $(a_0, a_1, ..., a_{n-1})$ to $(a_1 a_0, a_2 a_1, ..., a_{n-1} a_{n-2})$.
- ▶ D is a graph homomorphism from $B_2(n)$ to $B_2(n-1)$.
- Can extend definition to k-ary case, where D maps the k-ary n-tuple $(a_0, a_1, \ldots, a_{n-1})$ to $(a_1 a_0, a_2 a_1, \ldots, a_{n-1} a_{n-2})$, where computations take place modulo k.
- ▶ The inverse of D has been widely used, e.g. to recursively construct de Bruijn sequences, observing that D^{-1} maps a circuit in $B_k(n-1)$ to a set of k circuits in $B_k(n)$.

Upper bounds on the period of orientable sequences

Since any n-tuple can only occur once in a period in either direction, and symmetric n-tuples cannot occur, a trivial bound on the period of an $\mathcal{OS}_k(n)$ is

$$\frac{k^n-k^{\lfloor (n+1)/2\rfloor}}{2}.$$

- ► However, apart from when n = 2 and k is odd, this bound is not sharp.
- ▶ The binary case is different from k > 2 in particular, constant (n-1)-tuples and (n-2)-tuples cannot occur in a binary sequence, whereas they can for k > 2, so an $\mathcal{OS}_2(n)$ cannot exist for n < 5.
- Dai, Martin, Robshaw & Wild (1993) gave a bound for the binary case which is significantly sharper than the trivial bound.
- A bound for the k > 2 case which is a little sharper than the trivial bound was recently established (Alhakim, M, Szmidt & Wild, 2024).

2. New upper bounds on the period

- In recent work we have established new upper bounds on the period of a k-ary orientable sequence (for k > 2), sharper than the 2024 bound.
- These bounds all derive from simple observations regarding the subgraph of the de Bruijn graph defined by the edges of an orientable sequence.
- ▶ If S is a k-ary orientable sequence of order n an $\mathcal{OS}_k(n)$ then we define B_S to be the subgraph of $B_k(n-1)$ with edges corresponding to the n-tuples appearing in either S or S^R (where S^R is the reverse of S).
- ▶ The *n*-tuples appearing in either S or S^R are, of course, all distinct since S is orientable.
- ▶ Since S and S^R define edge-disjoint (but not vertex-disjoint) Eulerian circuits in B_S , it follows that B_S must be Eulerian.
- ▶ This simple observation leads to the improved bounds, given we can identify cases where certain edges cannot occur in B_S .

Degree-parity constraints

- An *n*-tuple $(a_0, a_1, \ldots, a_{n-1})$ is said to be *symmetric* if and only if $(a_0, a_1, \ldots, a_{n-1})$ is a palindrome.
- ▶ Both S and S^R correspond to an Eulerian circuit in B_S , and these circuits are edge disjoint and cover all the edges of B_S .
- ▶ If **a** is symmetric then both circuits pass through this vertex equally many times.
- \blacktriangleright It follows that **a** has even in-degree and even out-degree in B_S .
- If k is odd then every vertex in $B_k(n)$ has odd in-degree (and out-degree).
- ▶ Hence if k is odd and s is an $\mathcal{OS}_k(n)$ then, for every vertex corresponding to a symmetric (n-1)-tuple, at least one incoming edge and at least one outgoing in $B_k(n-1)$ cannot occur in B_S .
- ▶ This limits the edges that can be contained in B_S , and hence upper-bounds its period.

Semi-symmetry constraints

- An *n*-tuple $(a_0, a_1, \ldots, a_{n-1})$ is said to be *left-semi-symmetric* if and only if $(a_0, a_1, \ldots, a_{n-2})$ is a palindrome.
- ▶ E.g. for n = 5 and k = 3, (02201) is left-semi-symmetric, since 0220 is a palindrome.
- ▶ In the de Bruijn digraph $B_k(n)$, one of the edges incoming to such a vertex will be a palindrome, and hence cannot occur in an orientable sequence.
- So, if S is orientable, the in-degree of a vertex corresponding to a left-semi-symmetric tuple in B_S will be less than the maximum, and hence so will the out-degree.
- ▶ This limits the edges that can be contained in B_S , and hence upper-bounds its period.
- An analogous argument applies to right-semi-symmetric tuples.

Interactions

- ► The eagle-eyed amongst you will have immediately spotted that we cannot simply add together the numbers of excluded edges from these arguments as we may be double counting.
- As a result, we need to carefully (and rather painfully) examine a number of special cases.
- ▶ In the next slide, the bound resulting from these observations are tabulated for small *k* and *n*, with the 'old' bound given in brackets for comparison.

Bounds — new and (old) — on the period of an $\mathcal{OS}_k(n)$

	1 2	1 4	, -	1 6	, ,	
n	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8
2	3	4	10	12	21	24
	(3)	(4)	(10)	(12)	(21)	(24)
3	9	20	50	84	147	216
	(9)	(22)	(50)	(87)	(147)	(220)
4	30	112	280	612	1134	1984
	(33)	(118)	(290)	(627)	(1155)	(2012)
5	99	452	1450	3684	8085	15896
	(105)	(478)	(1490)	(3777)	(8211)	(16124)
6	315	1958	7550	23019	58065	130332
	(336)	(2014)	(7680)	(23217)	(58464)	(130812)
7	972	7844	38100	138144	408072	1042712
	(1032)	(8062)	(38640)	(139317)	(410256)	(1046524)
8	3096	32390	193800	837879	2876496	8382492
	(3189)	(32638)	(194630)	(839157)	(2879835)	(8386556)
9	9423	129572	971350	5027304	20149437	67059992
	(9645)	(130558)	(974390)	(5034957)	(20166027)	(67092476)

3. Methods of construction

- As described by Alhakim et al. (2024), can use the inverse Lempel homomorphism to go from an $\mathcal{OS}_k(n)$ of period m to an $\mathcal{OS}_k(n+1)$ of period km.
- ▶ However, it is non-trivial to ensure that D^{-1} yields a single sequence of period km rather than a set of (n+1)-tuple-disjoint sequences with periods summing to km.
- Moreover, some variants of the (inverse) Lempel homomorphism only yield 'negative' orientable sequences, in which the collection of all *n*-tuples and reverse negative *n*-tuples in a period are all distinct.
- Various approaches have been devised to fix this in recent work by Gabrić & Sawada (2024) and M & Wild (2024). Gabrić & Sawada showed how to join the multiple cycles produced, and Peter Wild and I constructed 'starter sequences' with special properties enabling repeated use of the Lempel homomorphism.
- ➤ Sequences produced by Gabrić & Sawada have asymptotically maximal period.

A different approach: Antisymmetric subgraphs of the de Bruijn digraph

- A subgraph T of the de Bruijn digraph $B_k(n)$ is said to be antisymmetric if the following property holds.
- Suppose $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$ and $\mathbf{y} = (y_0, y_1, \dots, y_{n-1})$ are k-ary n-tuples, i.e. vertices in $B_k(n)$.
- ▶ Then if (\mathbf{x}, \mathbf{y}) is an edge in T, then $(\mathbf{y}^R, \mathbf{x}^R)$ is *not* an edge in T.

From subgraph to sequence

- ▶ If S is an $\mathcal{OS}_k(n)$ of period m, then B_S is an antisymmetric Eulerian subgraph of $B_k(n-1)$ containing m edges.
- Antisymmetry follows from the definition of orientable.
- ▶ More importantly, if T is an antisymmetric Eulerian subgraph of $B_k(n-1)$ with m edges, then there exists an $\mathcal{OS}_k(n)$ S of period m with edge set T.
- ▶ Why? Since *T* is Eulerian there exists an Eulerian circuit. This Eulerian circuit corresponds to an *n*-window sequence, which is orientable since *T* is antisymmetric.

A simple construction for an antisymmetric subgraph

Construct the edge set such that an edge connects $(a_0, a_1, \ldots, a_{n-1})$ to (a_1, a_2, \ldots, a_n) if and only if

$$a_n-a_0\in\{1,2,\ldots,\lfloor(k-1)/2\rfloor\}.$$

- Every vertex has in-degree and out-degree $\lfloor (k-1)/2 \rfloor$. If $k \geq 5$ then T is connected, i.e. T is Eulerian.
- ▶ T is antisymmetric since every edge (a_0, a_1, \ldots, a_n) satisfies $a_n a_0 \in \{1, 2, \ldots, \lfloor (k-1)/2 \rfloor\}$, and hence $-a_0 (-a_n) = a_0 a_n \in \{\lfloor (k+2)/2 \rfloor, \lfloor (k+4)/2 \rfloor, \ldots, k-1\}$
- ▶ Thus T yields an $\mathcal{OS}_k(n+1)$ of period $k^n\lfloor (k-1)/2\rfloor$ (for $k \geq 5$).
- ▶ If n = 2, or n = 3 and k odd, the period meets the upper bound.

A small example

Consider the case k=5 and n=3. The 50 3-tuples in T are listed in the table, and a period of an $\mathcal{OS}_5(3)$ containing these 50 3-tuples is:

 $[00123\ 40112\ 23344\ 00213\ 24304\ 21431\ 03142\ 03204\ 10224\ 41133].$

001	002	102	103	203	204	304	300	400	401
011	012	112	113	213	214	314	310	410	411
021	022	122	123	223	224	324	320	420	421
031	032	132	133	233	234	334	330	430	431
041	042	142	143	243	244	344	340	440	441

Antinegasymmetry

- A subgraph T of the de Bruijn digraph $B_k(n-1)$ is said to be antinegasymmetric if the following property holds.
- Suppose $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$ and $\mathbf{y} = (y_0, y_1, \dots, y_{n-1})$ are k-ary n-tuples, i.e. vertices in $B_k(n)$.
- ▶ Then if (\mathbf{x}, \mathbf{y}) is an edge in T, then $(-\mathbf{y}^R, -\mathbf{x}^R)$ is *not* an edge in T.

From antinegasymmetry to antisymmetry

- If T is an antinegasymmetric subgraph of the de Bruijn digraph $B_k(n-1)$ with edge set E, then $D^{-1}(E)$, of cardinality k|E|, is the set of edges for an antisymmetric subgraph of $B_k(n)$, which, abusing our notation slightly, we refer to as $D^{-1}(T)$.
- If every vertex of T has in-degree equal to its out-degree, then the same applies to $D^{-1}(T)$.
- ▶ If T is connected and its edge set contains the all-one tuple, then $D^{-1}(T)$ is connected, i.e. in this case if T is Eulerian then so is $D^{-1}(T)$.

Constructing antinegasymmetric subgraphs

- ▶ If $0 \le u \le k-1$, set f(u) = u if $u \ne 0$ and f(u) = k/2 if u = 0.
- ▶ Suppose $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$ is a k-ary n-tuple.
- ► The pseudoweight of u is defined to be the sum

$$w^*(\mathbf{u}) = \sum_{i=0}^{n-1} f(u_i)$$

where the sum is computed in \mathbb{Q} .

- ▶ If E is the set of all k-ary n-tuples with pseudoweight less than nk/2, then E is the set of edges for an antinegasymmetric Eulerian subgraph of the de Bruijn digraph $B_k(n-1)$.
- ▶ Moreover, *E* contains the all-one *n*-tuple.
- ▶ Hence $D^{-1}(E)$ is a negasymmetric Eulerian subgraph of $B^k(n)$.
- This approach yields orientable sequences with largest possible period for n = 3 (all k) and n = 4 (k odd).

An example

Suppose k=3 and n=3. The ten 3-ary 3-tuples having pseudoweight less than 4.5 are listed below — this is E.

111		
011	101	110
001	010	100
112	121	211

 $D^{-1}(E)$ consists of the 30 4-tuples given below.

0120	1201	2012						
0012	1120	2201	0112	1220	2001	0122	1200	2011
0001	1112	2220	0011	1122	2200	0111	1222	2000
0121	1202	2010	0101	1212	2020	0201	1012	2120

An $OS_5(3)$ of period 30 containing these 4-tuples is:

[01201 21202 01012 22011 20011 12200]

4. Open questions

- Prior to the work described, the only cases where the largest period was known was for n = 2 (and a couple of other cases established by exhaustive search).
- The new bounds and new construction methods mean we have now resolved the maximum period question for n = 3 (all k) and n = 4 (odd k).
- ▶ However, apart these small values of n, there is a gap between the period of the longest known $\mathcal{OS}_k(n)$ and the best upper bound.
- This suggests further research is needed on two main problems:
 - tightening the upper bounds;
 - constructing sequences with periods closer to the upper bounds;
 - so that (ideally) there is no gap.
- ▶ Eliminating the gap altogether seems difficult.

Largest known periods for k = 2

Order (n)	Maximum known period	Dai et al. bound
5	6	6
6	16	17
7	36	40
8	92	96
9	174	206
10	416	443

- ► Figures in bold represent maximal lengths as verified by search.
- ► For further details see the excellent website maintained by Joe Sawada: http://debruijnsequence.org/db/orientable

Largest known periods for k > 2

Table: Largest known periods for an $OS_k(n)$ (and bounds)

n	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8
2	3	4	10	12	21	24
	(3)	(4)	(10)	(12)	(21)	(24)
3	9	20	50	84	147	216
	(9)	(20)	(50)	(84)	(147)	(216)
4	30	88	280	534	1134	1800
	(30)	(112)	(280)	(612)	(1134)	(1984)
5	93	372	1390	3360	7763	15120
	(99)	(452)	(1450)	(3684)	(8085)	(15896)
6	288	1608	7160	21150	56056	124320
	(315)	(1958)	(7550)	(23019)	(58065)	(130332)
7	882	7308	36890	135450	403389	1034264
	(972)	(7844)	(38100)	(138144)	(408072)	(1042712)
8	2691	30300	187980	821940	2844408	8315496
	(3096)	(32390)	(193800)	(837879)	(2876496)	(8382492)

- Upper bound values are given in brackets.
- Figures in bold represent maximal lengths.
- As of 25/5/25 we believe we can increase the 288 for n = 6, k = 3 to 303.

5. Literature

- (Mitchell & Wild, 2022): IEEE Trans on Inf Thy 68 (2022) 4782–4789.
- ► (Gabrić & Sawada, 2024): arXiv 2401.14341 and 2407.07029.
- ▶ (Mitchell & Wild, 2024): arXiv 2409.00672 and 2411.17273.

Other resources

- Joe Sawada's page: http://debruijnsequence.org/db/orientable
- ► The Combinatorial Object Server: http://combos.org/