A Secure Messaging Architecture Implementing the X.400-

1988 Security Features

C. MITCHELL, D. RUSH* AND M. WALKER*

Department of Computer Science, RHBNC, London University, Egham Hill, Egham, Surrey TW20 0EX

The 1988 version of the X.400 Recommendations now include a number of security features designed to enable the
provision of security services for Message Handling Systems. This paper describes one way in which the provided

Jfeatures can be used to provide a secure electronic mail system.

Received January 1989, revised March 1989

1. INTRODUCTION

1.1 X.400-1988 and security

The first version of the X.400 series of Recom-
mendations, which specifies a store-and-forward mess-
age handling system, was adopted by the CCITT in
1984. During the 1984-1988 study period of the CCITT,
these Recommendations have been completely revised,
both to correct defects in the 1984 versions and to add
new facilities. One notable example of new features is
provided by the security elements present in the latest
drafts of the 1988 Recommendations.> * 5

These security elements can be used to provide a
large variety of different security services, both end-to-
end and connection-oriented. Many of the proposed
security elements rely on key management services pro-
vided using security elements in the X.500 Directory
Service Recommendations, and in particular on the
service elements described in X.509.% Note that, unlike
the X.400 Recommendations, the X.500 Recom-
mendations did not exist prior to the current study
period.

1.2 An X.400 based secure mail system

The purpose of this paper is to describe one way in
which the security elements in the X.400 and X.500
Draft Recommendations can be used to provide a secure
electronic mail system.

The security architecture described in this paper,
although conformant to the CCITT Draft Recom-
mendations, is just one of a number of possibilities.
This is true for two main reasons. Firstly, there are a
large number of possible security services that can be
provided using the security elements in the Draft Rec-
ommendations, many of which will not be appropriate
to all (or even most) mail systems. Secondly, in many
cases, the same service can be provided in two or more
different ways. It is certainly true that, for two “secure”
X.400 systems to interwork, they will have to conform
to a very detailed subset of the Recommendations,
and it is hoped that this paper will contribute to the
development of such “profiles”.

* D. Rush and M. Walker are at Racal Research Ltd., Reading,
England.

The security architecture described here has been
developed as part of the Locator collaborative project,
which is itself part of the Mobile Information Systems
project, a major demonstrator within the UK Govern-
ment sponsored Alvey programme. The partners within
Locator are Hewlett-Packard Ltd, Racal Imaging Sys-
tems Ltd, Racal-Milgo Ltd, Racal Research Ltd and
University College, University of London. Locator has
as its goal the demonstration of a research prototype
(X.400 conformant) secure messaging system with
mobile access.

The prototype involves the use of three different
types of message handling entity, namely User Agents
(UAs), Message Stores (MSs) and Message Transfer
Agents (MTAs). (Note that the reader is assumed to be
familiar with the basic X.400 terminology.) In the
mobile scenario, a mobile UA will communicate with a
fixed MS/MTA, to retrieve and submit mail over a
cellular radio link. Mobility makes the use of an MS
essential, because a mobile UA will be unavailable for
receiving mail for a large percentage of the time. These
mobile UAs will be implemented on Hewlett-Packard
‘Portable Plus’ personal computers.

The mobile component in the main system had a
significant effect on the design of the security archi-
tecture (as we see below) although the problems
encountered and the lessons learnt are by no means
confined to the mobile case. For exar ple, many of the
problems encountered will also have to be faced by
desiguers of systems involving ‘remote’ UAs which are
frequently disconnected from, and thus unable to
receive mail from, the Message Transfer System.

Finally note that the demonstrator architecture and its
physical implementation have been describe 1in greater
detail elsewhere.’

1.3 Contents of paper

The security architecture supports a number of security
services which are described in Section 2. The provision
of these services is considered in detail in Section 4,
preceded by a discussion of key management issues in
Section 3. The paper concludes, in Section 5, with a
discussion of certain problems that have been encoun-
tered in using the security features in the X.400 Draft
Recommendations.

290 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990




SECURE MESSAGING ARCHITECTURE

2. SECURITY SERVICES

The security architecture has been designed to support
a number of security services, all bar one of which
are ‘end-to-end’ in nature. The selected services were
identified during an initial study as being those most
significant to end users of commercial messaging
systems. The end-to-end services are: content con-
fidentiality, message origin authentication, content
integrity, non-repudiation of origin, replay detection
and non-repudiation of delivery. The other service is
access control which, within this architecture, is only
provided on the UA-MS link, although Draft Rec-
ommendations X.411 and X.413,%¢ allow it to be pro-
vided on all links between message handling entities. It
should be observed that the service names we use are
those in the X.400 Draft Recommendations; they do
not correspond precisely to the names given in the OSI
security architecture.!®

Within the project’s implementation of our archi-
tecture, not all the services may be requested inde-
pendently. For instance, the message origin
authentication, content integrity and non-repudiation
of origin services are grouped together under a single
user ‘authentication service’. There are two reasons for
this. First, the services may be provided using essentially
one and the same mechanism, so that there are good
practical reasons for grouping them. Second, it is con-
sidered unlikely that users of a mail system would want
one of these services without the others, or indeed could
really distinguish between them.

A second, and more significant, restriction on the
provision of services is that an originator of a message
may not simultaneously provide content confidentiality
and request non-repudiation of delivery. The reason for
this restriction stems from the fact that the Message
Transfer System may need to deliver messages to an
MS, rather than to the intended recipient UA. This
rather undesirable restriction on the provision of secur-
ity services in the mobile environment is discussed in
detail in Section 5.2. It serves to illustrate the problems
that arise when attempting to use the X.400 security
features to provide a comprehensive set of security
services, and to pin-point where amendments to the
standards are needed.

3. KEY MANAGEMENT

In our architecture, the management of the crypto-
graphic keys, required for the provision of the selected
security services, is achieved by using security features
built into the Directory Service specified in the X.500
series of Draft Recommendations. Of particular import-
ance is the authentication framework, specified in Draft
Recommendation X.509.8

The key management system is based on the use of
public key (asymmetric) cryptosystems (pkcs), which
are used for both digital signatures and encryption. In
a pke, keys are produced in pairs, one of which is made
public whilst the other is known only to its owner.? The
X.509 authentication framework allows a user’s public
key to be stored in its directory entry. One user wishing
to exchange secure messages with another obtains the
other user’s public key from the appropriate directory
entry, and then uses this key to provide the required
security services, as described in Section 4.

3.1 Digital Signatures

The X.509 authentication framework does not specify
any particular pkc, although it does require the use of
a pke satisfying a special property. This property (listed
in clause 6.1 of X.509,%) is that ‘both keys in the key
pair can be used for encipherment’, i.e., both the public
key and the secret key can be used to operate on
arbitrary data. The reason for insisting on this special
property is that the framework specifies how the pkc is
to be used to provide digital signatures, and this method
requires that the pkc has the specified property.

The method specified for digital signatures is simple.
First, the data to be signed is ‘hashed’ using a collision-
free hash function.!” In our architecture the hash func-
tion used is that suggested in Annex D of X.509, and is
based on the repeated use of modular squaring. The
end result of this hash function (the ‘hash value’) must be
sufficiently small to be processed by a single encryption
operation of the selected pkc. The hash value is then
encrypted using the selected pkc under the control of
the secret key of the signer. Since the hash function is
public, the signature can then be checked by anyone
who has access to the public key of the signer. As in
X.509,% we denote the signing of data block I using the
secret key of signer X by

X{n

where X{l} is defined to consist of a copy of I followed
by the value obtained from hashing and enciphering I
under the signer’s secret key.

Unfortunately, there are very few pkcs known which
have the specified Property, and the only well-estab-
lished one is RSA;™® consequently, this is the pkc we
use in our demonstrator. There is no need to specify so
precisely how digital signatures are produced, and the
fact that this is done within X.509 is a shortcoming of
the authentication framework. Indeed, a small change
to the framework would allow arbitrary pkcs to be used
with arbitrary (and possibly unrelated) digital signature
algorithms.

3.2 Certificates and Certification Authorities

Since the directory is not a secure or trusted service,
means need to be provided for users to verify public
keys read from the directory. As described in X.509,8
this is achieved by using off-line trusted entities known
as Certification Authorities (CAs) who provide ‘cer-
tificates’ for users’ public keys.

In order to store a copy of a public key in the direc-
tory, a user must choose a CA; this CA must be trusted
by the user, because a fraudulent CA has the power to
mislead the users for whom it acts. Like the users, every
CA must also have its own pkc pair.

The user and the CA exchange their public keys in
such a way that each trusts the validity of the received
key and the identity of the other party; this could, for
example, be achieved by the user and the operator of
the CA meeting and physically exchanging floppy disks
containing the relevant keys. The CA then computes a
digital signature on the following set of data: the CA’s
name, the user’s name, the user’s public key and the
period of validity for the user’s public key. This sig-
nature is computed with the CA’s secret key, using the
technique described above. The set of data, together

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 291




C. MITCHELL, D. RUSH AND M. WALKER

with the signature itself, forms the user certificate, which
is stored in the user’s directory entry. Using the notation
introduced earlier, if user named A has certification
authority with name X, then A’s certificate has the form

X{X, A, Ap, T}

where Ap is A’s public key, and T indicates the period
of validity of the certificate. We denote such a certificate
by

X(A).

Any other user, which has a trusted copy of X’s public
key, can then check the signature on the certificate, and
hence obtain a verified copy of A’s public key.

The scheme, as described so far, no longer works
when two users are served by different CAs. To cover
this possibility, CAs may generate certificates for each
other; such certificates are called ‘cross-certificates’.

As an example of the use of cross-certificates, suppose
users A and B are served by CAs X and Y respectively.
Then X and Y generate (and store in the directory) the
following certificates:

X(A), Y(B).

Additionally suppose that CAs X and Y are able to
exchange public keys in a verifiable way, and thence
generate the following two cross-certificates:

X(Y), Y(X).

Then user B may use the sequence of certificates

Y{X), X¢A)

(in combination with a trusted copy of Y’s public key)
to first obtain a verified copy of X’s public key, and then
a verified copy of A’s public key. Such a sequence of
certificates is called a certification path. It is important
to note that, in order to trust a public key checked using
such a path, it is necessary to trust all the CAs in the
path.

In our prototype system we have not implemented
any sophisticated mechanisms for constructing cer-
tification paths. Indeed the demonstration system is
sufficiently small to allow each CA to cross-certify each
other CA, and therefore certification paths will only
ever contain two certificates. However, in larger
systems, it will be necessary to provide for the con-
struction of longer paths, and in general this could
present a very difficult problem.

4. SECURITY SERVICE PROVISION

The majority of the security features incorporated into
the X.400-1988 Draft Recommendations make use of a
cryptographic construct called a token. In fact, tokens
will be used in the provision of all the security services
in the project demonstrator. We begin this section by
describing the general form of a token, and then con-
sider how such a construct is used in the provision of
the various security services.

4.1 Tokens

A token consists of a series of data fields with a digital
signature appended, exactly like a certificate. Unlike
certificates, tokens are always generated by a user for

transmission to a single other user. The precise form of

a token sent by user B to user A is

B{t8, A, sgnData, Ap[encData]}

where 8 is a timestamp, A is the name of the intended
recipient and sgnData and encData are collections of
security-related parameters; the contents of sgnData
and encData vary depending on the security services
being provided. The notation Ap[encData] means that
the data field encData is sent encrypted under A’s public
key, so that the contents of encData are available only
to the intended recipient. In our architecture, encData
is only ever used for the transmission of secret key
information as part of the content confidentiality pro-
cedure described below. It is important to note that,
whatever the contents of the sgnData and encData
fields, the signature on the token prevents them being
changed in an undetectable way.

It should be observed that the token signature is
applied after the encData has been encrypted under the
recipient’s public key. This is the construction that is
specified in X.411 and X.509,>® but it is arguable that
encryption should be applied after the signature, either
to the entire token, or to selected ‘secret’ fields of the
token. In many cases the chosen token structure could
lead to security problems, although these are overcome
within our architecture by a suitable choice of hashing
function; for further discussion see Section 5.1 below.

Within our architecture, all the end-to-end services
are provided using a special type of token called a
message-token. Some of these services may be provided
in other ways, but we concentrate here only on those
techniques we use. Message-tokens accompany indi-
vidual messages, on a per-recipient basis, i.e., a distinct
token is sent to each recipient of the message for whom
security services are provided.

4.2 Content confidentiality

If content confidentiality is required for a particular
message, then, unlike other security services, this must
be provided either to all, or to none of the recipients.
The service is provided by encrypting the entire message
content. The encryption algorithm used for this purpose
is not specified in the X.400 Recommendations, and
may be either conventional (symmetric) or public key
(asymmetric) in type. In our architecture the DES algor-
ithm is used.! 2 The key used for the encryption process
is selected at random by the message originator, a new
key being selected every time a confidential message is
sent. A different message-token is sent with the message
for every recipient, and the key used to encrypt the
message content is included in the encData field of each
token.

4.3 Authentication services

In the demonstrator architecture, the three auth-
entication services, message origin authentication, con-
tent integrity and non-repudiation of origin, are all
provided together, and may not be requested inde-
pendently. In fact, the mere existence of a message-
token for a recipient provides message origin auth-
entication for that recipient, although the service is of
dubious value on its own since there is no guarantee

292 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990



SECURE MESSAGING ARCHITECTURE

that the message content has not been altered. This is
one reason why all three services are combined, result-
ing in a meaningful and useful set of options being
offered to users.

To provide these three services a ‘Content Integrity
Check’ (CIC) is generated and included in the sgnData
of the message-tokens for all recipients for whom the
services are to be provided. This CIC must be computed
as a ‘one-way function’ of the message-content. The
function to be used to compute the CIC is not specified
within Draft Recommendation X.411.5 However, if it
is to provide the non-repudiation of origin service, then
it must satisfy the same properties as are required of a
hash function used in the computation of digital sig-
natures. In our architecture the CIC is computed using
precisely the same function as that used for hashing data
in certificates and tokens, i.e., the modular-squaring
function described in Annex D of Draft Recom-
mendation X.509.% The presence of the CIC in a token
enables a recipient to verify the integrity and auth-
enticity of the message-content.

Itis interesting to note that the relevant Draft Recom-
mendation, i.e. X.411,3 allows the CIC to be sent inde-
pendently of the token. As discussed in Ref. 16, in this
case it must be computed using a secret key known
only to the originator and recipient; otherwise it is
unprotected against manipulation by an active inter-
ceptor.

Even if the CIC is computed using a secret key,
problems still arise when messages are to be sent to
more than one recipient. As described in Refs 14 and
15, depending on the method used to compute the CIC,
it may be possible for one recipient to modify the version
of the message intended for another recipient in an
undetectable way. Since there is no means for providing
a different CIC for each recipient, one of the remedies
described in Ref. 15, for avoiding this problem may be
rather difficult. These problems appear to make the
inclusion of the CIC in the token the preferred mode
of operation in most circumstances.

The replay detection service is provided to a recipient
by including a message sequence number within the
sgnData of the message-token for that recipient. This
service forms part of the message sequence integrity
service described in Draft Recommendations X.400 and
X.402.>* The way in which the sequence number is
used is not completely specified within the X.400 Rec-
ommendations; we now describe how it is used in our
architecture. Every user keeps a list of all other users
for whom this service is to be provided, and a number
is associated with each entry in the list. This number
represents the message sequence number assigned to
the last message sent to that user. The next time a
message is sent to that user it is assigned a sequence
number one larger than the stored value, and the stored
value is updated. The receiver of this message will also
keep a list of numbers (one for each other user from
whom messages are received that incorporate replay
detection). This enables the message sequence number
in the message token to be checked for its ‘freshness’.
The inclusion of the sequence number in the token
ensures its integrity, and therefore provides a secure
replay detection service.

In general, given that a sequence number approach
is followed, means must be provided for dealing with

the exhaustion of the message numbering space. One
possibility, and the approach followed within our archi-
tecture, is to make the space sufficiently large so that
the problem will never be encountered in practice.
Another possibility is to allow sequence numbers to
cycle, i.e. to go from the largest allowed value back to
zero. In this case a window criterion must be added,
i.e. for some small pre-determined value k, a sequence
number is only accepted if it is at most k further on in
the numbering sequence than the number of the last
acceptable message.

4.4 Non-repudiation of delivery

The final end-to-end service, namely non-repudiation
of delivery, is rather different in nature from the other
services, in that it is provided in two stages: request and
provision. The originator of a message does not provide
the service, but rather requests its provision. The service
is actually provided by the message recipient through
the return of a ‘receipt’ for the message called a ‘proof-
of-delivery’.

The procedure for requesting the service is to include
a ‘proof-of-delivery-request’ flag in the message token
for the recipient(s) concerned. When such a message is
delivered, the proof-of-delivery is computed as a digital
signature on the (unencrypted) message-content and
various delivery-related parameters. The signature is
evaluated using the recipient’s secret key, and the func-
tion used is precisely the same as that used for signatures
on certificates and tokens. The proof-of-delivery is then
returned to the message originator within the delivery
report, and can be used by the originator to give the
desired non-repudiation of delivery service.

4.5 Secure access control

We conclude this discussion of security services by
describing how the only security service which is not
end-to-end, namely secure access control, is provided.
As has already been mentioned, within the demon-
strator architecture this service is only provided on the
link between a UA and its associated MS; this is because
the UA-MS link is perceived as being the most prone
to attack. The service is based on the exchange of
another special type of token, called a bind-token, at
the time a connection is set up between a UA and its
MS. The service is restricted to access control, and
does not provide connection integrity or confidentiality.
However, the bind-tokens could be used to exchange
keys for the provision of such connection-oriented ser-
vices, although no means of providing them are defined
within the X.400 Draft Recommendations.

In more detail, the initiator of the connection between
a UA and its MS, which must be the UA, includes a
bind-token in its initial communication; for details of
the connection initiation see Draft Recommendation
X.413.% Prior to generating the token, the connecting
UA selects a random number specifically for this con-
nection. The size and form of the random number
is not specified within Draft Recommendation X.413;
however, we use a 64-bit value. This number is then
included in the sgnData field of a bind-token sent from
the UA to its MS; this token is called an ‘initiator-bind-
token’. The encData field of the token will be empty,

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 293




C. MITCHELL, D. RUSH AND M. WALKER

although, as mentioned earlier, this could be used to
convey keys for providing connection-based security
services.

On receipt of an initiator-bind-token, the MS checks
the signature on the token and recovers the random
number from the sgnData field. The MS also checks the
time value within the token in order to check that it
is ‘fresh’. Given that the received token is deemed
acceptable, the MS generates another bind-token,
called a ‘responder-bind-token’, and returns it to its
UA. The random number taken from the sgnData field
of the initiator-bind-token is reproduced in the sgnData
field of the responder-bind-token. On receipt of the
responder-bind-token, the originating UA checks the
token signature and the random number in the sgnData
field, and if these tests pass, the connection is allowed
to proceed.

5. PROBLEMS WITH USE OF THE X.400
MECHANISMS

We now consider some problems that have been
encountered with using the security features within the
X.400 Draft Recommendations to provide the required
security services in the mobile environment. The major
problems have centred around the structure of tokens
and the provision of the non-repudiation of delivery
service. We now consider these problems in a little more
detail.

5.1 Token structure

As we noted in section 4.1 above, and as has been
pointed out by Burrows and Needham,!” there are con-
siderable potential security problems with the form of
token used in the X.400 and X.500 Recommendations.
The root case of these problems is that the X.509 token
involves signing encrypted data, which is generally
accepted as bad practice; see, for example, Section 9.3
of Davies and Price.!! This is because, if the crypto-
operations are performed in that order, the recipient
will only be able to guarantee the authenticity of the
encrypted data, and not of the plaintext data. This leads
us to the main objection to the X.509 form of token.

To explain this objection we need to first consider a
‘new’ security service, which, although not normally
part of an authentication/integrity service, is intimately
related to them. For want of a better name we call the
service ‘Authorship’. This service, if provided for a
message sent from user A to user B, will guarantee to
B that the message is known to A (the service is clearly
not useful unless provided in conjunction with integrity,
authentication and confidentiality services). It is reason-
able to ask in what circumstances such a service would
not be provided by default, given the provision of all
these other services; we return to this question in a
moment. We first consider what use might be made of
such a service.

As an example consider its potential usefulness to
Patent Offices of the future, to which claims are sub-
mitted via electronic mail (or some similar electronic
communications medium). Individuals submitting pat-
ent claims to the office would, presumably, want to
provide confidentiality, integrity and authentication ser-
vices for the patent claim message. The recipient of a

claim would also, more than anything else, want to
ensure that the patent claim comes from whom it claims
to come from, since he will ultimately be assigning
ownership of the patent to the claimed originator.

We now consider how such a service can fail to be
provided. Suppose that, as in our architecture,

—Message integrity is provided by including a Content
Integrity Check (computed as a function of the mess-
age content) in the sgnData field of the token;

—Originator authentication is provided by the signature
on the token;

—Message confidentiality is provided by using a ran-
domly chosen key to encrypt the message content,
and this key is passed to the recipient in the encData
field of the token.

Now suppose that a malicious third party, wishing to
claim ‘authorship’ of the message, intercepts it in transit.
He now constructs a new message, containing the same
encrypted content as the old message, but accompanied
by a new token. This new message is then sent to the
original intended recipient by the third party. The new
token contains the same encrypted encData field as the
old token, and the same Content Integrity Check in the
sgnData field, although the token is now signed by the
third party. The recipient of this new message will
now believe that the message comes, not from its true
originator, but from the third party. Therefore the
‘authorship’ service is not provided, although message
confidentiality, integrity and origin authentication are!

It appears reasonable to lay most of the blame for the
lack of provision of the authorship service with the
form of token used. If the encryption and signature
operations were performed in reverse order, the service
would be provided ‘for free’. This is because, if the
signature is always computed on unencrypted data, the
recipient can establish that the claimed originator knows
the plaintext values of all the data in the token, and
therefore the plaintext value of the message.

One might argue that the inclusion of the name of
the originator in the message itself would solve the
problem, since any changes to the message would be
detected by the integrity check mechanisms; indeed, the
name of the originator may (optionally) be present in
the P2 encoding of a message, as defined in X.420.’
However, this, like other possible solutions, is very
much a ‘fix’ to a problem which would not exist if the
token did not possess a defect in the first place.

Having made these points we note that, in our archi-
tecture, the problem is not present because of the
method used to compute the CIC. As stated above, the
CIC is computed using the hash function described in
Annex D of X.509,% which is based on the use of
repeated modular squaring. The modulus used is always
the modulus for the RSA key of the signer, and the CIC
is therefore a function of the identity of the message
originator. This prevents its misappropriation by third
parties wishing to claim ownership of messages.

5.2 Non-repudiation of delivery

In the description of the generation of the proof-of-
delivery by a message recipient, the precise identity of
the key used to compute the signature was deliberately
not discussed, and was merely referred to as the recip-

294 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990



SECURE MESSAGING ARCHITECTURE

ient’s secret key. Problems arise because of the fact that
Draft Recommendation X.411,° requires that the proof-
of-delivery be generated and returned to the delivering
MTA at the time the message is delivered. If the mess-
age is delivered to an MS, then the MS must generate
the proof-of-delivery rather than the intended recipient
UA. This requires the MS to have access to an RSA
key pair.

One solution to this problem would be to give every
MS access to the secret RSA key belonging to its associ-
ated UA. This solution has a major drawback in that
many MSs may be implemented on the same remote
machine, which is not trusted to the same degree as the
portable UA machine. The only other solution, and the
solution adopted for the demonstrator architecture, is
to equip every MS with its own RSA key pair, distinct
from the key pair belonging to its associated UA. The
secret key from this MS key pair is then also used to
sign the responder-bind-token used in the provision of
secure UA-MS access control.

With this solution, problems arise with generating
certificates for the MS public keys. Such a certificate
must be distinguishable from a UA certificate, or else
possessors of MS keys will be able to masquerade as
UAs. Within the current draft of the X.509 auth-
entication framework,? there is no provision for doing
this, since a UA and its corresponding MS share the
same O/R name. In our work we have therefore been
forced to use non-standard means to achieve our aims.

One possibility under consideration is to commandeer
a field of the certificate and use it to distinguish MS and
UA keys. In addition to names, dates and a public key
value, every certificate contains an ‘algorithm-identifier’
(within the public key parameter), intended to specify
which algorithm the public key is intended to be used
with (e.g. RSA). In our architecture we are considering
the use of this data field to include additional infor-
mation indicating the ‘scope of use’ of the key, i.e.
whether the key belongs to a UA, an MS or to a CA.
This is admissible since there are, as yet, no standards
for algorithm-identifiers; however, the scheme does
violate the spirit of the ISO naming and addressing
conventions. This is the only part of the architecture in
which we are considering using non-standard security
facilities.

A further problem arises when an MS is required to
compute a proof-of-delivery. We stated above that the
proof-of-delivery is computed using the unencrypted
message-content. This is a problem for an MS, since the
key required to decrypt the message-content is within
the encData field of the message token, encrypted using
the recipient UA’s public key. It is therefore not possible
for the MS to recover the unencrypted message-content
unless it has access to the UA’s secret RSA key. As has
already been stated, this is undesirable, and not allowed
in our architecture. The ‘solution’ we have adopted is
to prohibit an MS from providing non-repudiation of
delivery if the message content is encrypted. This is
clearly unsatisfactory, but there is no obvious way to
improve the situation.

5.3 Concluding remarks
In conclusion, we have identified two significant prob-

lems with the current versions of the X.400 and X.500
Draft Recommendations. Although these problems are
not catastrophic, in that it is still possible to build a
secure electronic mail service, it is nevertheless of vital
importance that they be addressed within the next study
period of the CCITT.

6. ACKNOWLEDGEMENTS

The work described in this paper was carried out as
part of the UK DTI Alvey Programme in the Mobile
Information Systems Demonstrator. The authors would
like to acknowledge the help and support of their col-
leagues on the Locator project who have collaborated
in the design of the security architecture described in
this paper.

REFERENCES

1. A.N.S.I. X3.92-1981, Data encryption algorithm, Ameri-
can National Standards Institute, 1981.

2. H.J.BekerandF. C. Piper, Cipher systems, van Nostrand,
U.K., 1982.

3. C.C.LT.T., Draft Recommendation X.400. Message
Handling: System and Service Overview, Version 5.5,
April 1988.

4. C.C.LT.T., Draft Recommendation X.402. Message
Handling Systems: Overall Architecture, Version 6,
Geneva, March 1988.

5. C.C.I.T.T., Draft Recommendation X.411. Message
Handling Systems: Message Transfer System: Abstract Ser-
vice Definition and Procedures, Version 6, Geneva, March
1988.

6. C.C.I.T.T., Draft Recommendation X.413. Message
Handling Systems: Message Store: Abstract Service Defi-
nition, Version 6, Geneva, March 1988.

7. C.C.LLT.T., Draft Recommendation X.420. Message
Handling Systems: Interpersonal Messaging System, Ver-
sion 6, Geneva, March 1988.

8. C.C.I.'T.T., Draft Recommendation X.509. The Direc-
tory—Authentication Framework, Geneva, March 1988.

9. R. Cole, C. Hall, M. Hassall, A. Pell and J. Walker,
Demonstrating the mobile office, Proceedings of UK IT
88, Swansea, July 1988, IEE, 1988, pp. 597-600.

10. I. B. Damgard, Collision free hash functions and public
key signature schemes, Proceedings of Eurocrypt 87,
Springer-Verlag, Berlin, 1988, pp. 203-216.

11. D. W. Davies and W. L. Price, Security for computer
networks, John Wiley and Sons, Chichester, 1984.

12. F.I.P.S. 46, Data encryption standard, National Bureau
of Standards, 1977.

13. 1.S.0., IS 7498-2. Information processing systems—Open
Systems Interconnection—Basic Reference Model. Part 2:
Security Architecture, International Organisation for
Standardisation, 1988.

14. C. J. Mitchell, Multi-destination secure electronic mail,
The Computer Journal 32 (1), 13-15 (1989).

15. C. J. Mitchell and M. Walker, Solutions to the multi-
destination secure electronic mail problem, Computers
and Security 7 (5), 483488 (1988).

16. C. J. Mitchell, P. D. C. Rush and M. Walker, CCITT/
ISO standards for secure message handling, IEEE Journal
on Selected Areas in Communications, to appear.

17. R. M. Needham, Private communication, 1988.

18. R. L. Rivest, A. Shamir and L. Adleman, A method for
obtaining digital signatures and public-key cryptosystems,
Communications of the ACM 21, 120-126 (1978).

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 295



