
ID-based cryptography using symmetric primitives

Chris J. Mitchell, Fred C. Piper and Peter R. Wild
Information Security Group, Royal Holloway,

University of London, Egham, Surrey TW20 0EX, UK
{c.mitchell,f.piper,p.wild}@rhul.ac.uk

23rd May 2007

Abstract

A general method for deriving an identity-based public key cryptosystem
from a one-way function is described. We construct both ID-based signature
schemes and ID-based encryption schemes. We use a general technique
which is applied to multi-signature versions of the one-time signature scheme
of Lamport and to a public key encryption scheme based on a symmetric
block cipher which we present. We make use of one-way functions and
block designs with properties related to cover-free families to optimise the
efficiency of our schemes.

Keywords: ID-based cryptography, symmetric primitives, one-time signa-
ture, cover-free family.

AMS classification: 94A60

1 Introduction

According to Menezes, van Oorschot and Vanstone [17], identity-based (ID-
based) cryptography was first proposed by Blom [2] in 1983. Since then a
large variety of different schemes have been proposed, a summary of which
(up to 1997) can be found in [17]. ID-based signature schemes have probably
received the most attention, and an international standard exists for such
schemes, [11].

As defined in [17], an ID-based scheme is an asymmetric cryptosystem
wherein the entity’s public identification information plays the role of its
public key, and is used by a trusted authority T (along with T ’s private
key) to compute the entity’s private key. After computing it, T transfers
the entity’s private key to the entity over a secure channel. In this paper we

1

describe a general method for deriving an ID-based system from any ‘con-
ventional’ public key cryptosystem. We describe an application of this idea
to derive an ID-based key establishment scheme in the setting of public key
cryptosystems based on the discrete logarithm problem.

Our method is also applicable to the less conventional public key cryptosys-
tems which are based on symmetric primitives. We adopt the one-time
signature schemes that use symmetric primitives to develop an ID-based
signature scheme. We also present a public key encryption scheme using a
symmetric block cipher and develop an ID-based scheme from it.

Note that, in the schemes derived using the general method described be-
low, we use a slightly generalised version of the above definition of ID-based
scheme. The entity’s public key is actually derived from the entity’s iden-
tification information using a public function (this is, in fact, a common
property of such schemes).

As discussed below, of the possible types of ID-based cryptosystem, en-
cryption and key establishment schemes are likely to be of the greatest
practical significance. They also happen to be amongst the least common,
which makes the work of this paper of potential practical importance. Such
schemes enable a user to send a secret message to any other entity, without
having to first obtain any key material for that entity. All that is required
is an identifier for the recipient, e.g. an email address. It only requires the
sender to first acquire the appropriate set of system parameters. Moreover,
the recipient does not need to have been equipped with the private decryp-
tion key in advance — he/she can request it when needed. This type of
scheme is probably most appropriate when the recipient is part of a well-
defined organisation, e.g. a government department or a large corporation,
for which system parameters can be made widely available. There are many
examples of situations where the need to send a secure message to such an
individual arises, not least for e-government.

In section 2 we give our technique for deriving an ID-based scheme from any
public key cryptosystem and section 3 discuss a specific implementation and
some related practical issues. In section 4 we discuss public key cryptosys-
tems based on symmetric primitives. We review signature schemes based on
the one-time signature scheme of Lamport and describe a multi-signature
version of Rabin’s one-time signature scheme. We show how a public key
encryption scheme may be derived from a symmetric block cipher system
and discuss the use of Merkle hash-trees for efficient authentication of pub-
lic keys and verification data. In section 5 we show how to obtain ID-based
signatures from symmetric primitives and how to optimize their efficiency
and in section 6 we show how to obtain an ID-based encryption scheme from
symmetric primitives.

2

2 Deriving an ID-based cryptosystem from any
public key cryptosystem

We start by describing a method which enables any public key cryptosystem
to be used as an ID-based scheme. In the description below we suppose that
a trusted centre has been chosen. As for any ID-based scheme, this centre
must be trusted by all the users of the scheme. We also suppose that a
public key cryptosystem has been selected for use — this can be a public
key cryptosystem of any type.

Note that the scheme described here is, as far as is known, original. However,
there are some resemblances to the key predistribution scheme of Matsumoto
and Imai [15], although the latter scheme is designed only for establishing
shared secret keys.

Heng and Kurosawa [8] describe a k-resilient identity-based encryption scheme
that makes use of the homomorphic properties of El Gamal encryption.
Their scheme is secure under the assumption that the Decisional Diffie-
Hellman problem is hard, provided that no more than k private keys are
subverted. The scheme of Boneh and Franklin [3], which uses the bilinear-
ity property of the Weil pairing, is secure under the Weil Diffie-Hellman
assumption.

Our technique is combinatorial in nature and does not rely on any algebraic
properties of the public key cryptosystem. Indeed, we are able to make use of
asymmetric cryptosystems based on symmetric primitives. In such a case,
the private key is typically a string of keys for a block cipher. Although
the security level of our scheme for an adversary without access to these
keys is that of the hash function or block cipher used in the construction,
an adversary with access to subverted keys may succeed in an attack with
probability the ratio of the number of subverted keys to the total number
of keys held by a user.

2.1 Initialisation

The trusted centre T first generates a large number of public/private key
pairs for the chosen public key cryptosystem. The set of public keys are
then distributed to all parties in the system, whilst the private keys are
retained by T (these keys collectively form T ’s private key for the ID-based
cryptosystem). We suppose that a total of n public keys are distributed,
and that they are labelled P0, P1, . . . , Pn−1. Note that this distribution
must be performed in such a way that the recipient can trust the validity
of the information. This is again a common feature of ID-based schemes;
almost invariably it is necessary for T to distribute domain parameters in
a trusted way. The main difference here is that the amount of information

3

is significantly larger than usual (although not too large to cause major
problems, as we discuss below).

T also selects and distributes a ‘key finding’ function f , where f maps
I, the set of all possible user identifiers (within the community of users
served by T), into the set {0, 1, . . . , n − 1}. The choice of f will depend
on the application; however, in general f should be chosen to minimise the
probability that f(iX) = f(iY) when iX 6= iY (iX , iY ∈ I). Of course if
|I| ≤ n then f can be chosen to be injective, i.e. this probability is zero.
However, the more typical case is likely to be where |I| is very much larger
than n, and in this case one can implement f using a hash-function with
good randomising properties (i.e. so that each output of f is equally likely).
Note that we only require the properties normally associated with a hash-
function as used for data storage, rather than requiring all the properties
normally required of a cryptographic hash-function. (Even if f is realised
using a one-way hash-function, f will not be one-way since n will not be
sufficiently large for this to be possible).

2.2 Obtaining keys

Now suppose that entity A wishes to obtain the public key for entity B. We
also suppose that entity A knows the identifier iB of B, where this identifier
must be unique within the particular community of users. To obtain the
desired public key, A computes f(iB), and the public key of B is simply
Pf(iB). Hence A can obtain B’s public key purely using information already
possessed by A.

When B wishes to obtain his/her private key, he/she needs to obtain it from
T . Assuming that the n private keys held by T are labelled S0, S1, . . . , Sn−1,
where Sj is the private key corresponding to public key Pj (0 ≤ j < n), T
provides B with the private key Sf(iB). Of course, before handing over the
key, T would typically check that iB is the valid identifier for B, and that B
is entitled to be given the private key. (This will prevent B from choosing
his/her identifier so that f(iB) = f(iC) for another user C).

Note that one obvious alternative to our scheme would simply be to allocate
keys to entities prior to distribution of the set of public keys. However, the
advantage of our scheme is that it allows entities to be equipped with key
pairs at any time, without redistributing public keys.

2.3 Properties and parameter choice

The system will clearly work, and the main problem would appear to be that
there is a chance that two different entities (A and B say) will be assigned
the same key pair. Assuming that P0, P1, . . . , Pn−1 are all distinct, this will

4

happen if and only if f(iA) = f(iB). The probability that this will happen
depends on the choice of f , the number of users (u say), and the value of n.

For example, if f is implemented using a hash-function, and we assume
that the hash-function behaves randomly, then the probability that this will
happen is equal to

1−
u−1∏

j=0

n− j

n
.

For large n this approximates to 1 − exp(−u2/2n); see, for example, [17].
Hence, by choosing the values so that u is a little less than

√
n, the proba-

bility of this undesirable occurrence can be made suitably small.

Of course, this discussion reveals a fundamental limitation of our approach
by comparison with other schemes, such as those of Boneh-Franklin [3] and
Cocks [5]. That is, in these latter schemes identifiers can be chosen arbitrar-
ily, whereas here the form of identifiers must be constrained lest an attacker
is able to generate unlimited numbers of identifiers which can be legitimately
associated with the attacker. If this was possible then the attacker could re-
peatedly generate identifiers for itself until one is found which has the same
image under f as the identifier of a target user.

3 An example implementation

We next consider one example of the derivation method described in the
previous section. We set this example in the more familiar setting of public
key cryptosystems that depend on the discrete logarithm problem. This is
the setting of the archetypical Diffie-Hellman key agreement protocol. We
consider ID-based cryptosystems that depend on symmetric primitives in
sections 4, 5 and 6.

3.1 Background

We suppose that the public key cryptosystem to which the derivation tech-
nique applies is one of the variants of the Diffie-Hellman key agreement
scheme, as originally proposed in [7]; for a discussion of some of the many
variants of this scheme, see, for example, [17], or the relevant international
standard, [10]. With all these schemes, a large prime p is chosen together
with a ‘base’ g, where g should be chosen to have large prime order modulo
p (let q be the order of g mod p). A private key is then a random integer x
less than q, and the corresponding public key is simply gx mod p.

One issue of significance here is that this can yield a non-interactive key
agreement scheme, where the entity wishing to derive a shared secret can do

5

so using the scheme without any prior exchange of messages. Such schemes
appear relatively difficult to construct — see, for example, [16]. More gener-
ally, the scheme could also be used to yield an ID-based encryption scheme,
examples of which are also not common (see [3, 6]).

Note also that, in one sense at least, non-interactive ID-based key agreement
schemes are potentially amongst the most useful of the ID-based schemes,
since they enable one user to send an encrypted message to another user with
no prior interactions with that user or with a trusted third party (except
the initial interaction to establish the ID-based private key). This is not
possible with a non-ID-based key agreement scheme. ID-based signatures are
a little less attractive in this respect, since even with a conventional signature
scheme it is possible to send a signed message with no prior interactions, and
indeed arrange for the recipient to be able to verify it immediately, simply
by attaching the appropriate public key certificate to the signed message.

Finally note that the discussion below could apply equally to any public
key cryptosystem in which a user’s public key is the discrete logarithm of
his/her private key in some group (e.g. the elliptic curve group).

3.2 Realisation

The trusted centre generates g and p, and also generates n key pairs. The
set of n public keys (together with g and p) then need to be distributed to
all members of the scheme. One possibility would be to write all n public
keys to a portable storage medium, e.g. a DVD-ROM. A double sided DVD-
ROM has the potential to store of the order of 233 bytes of data (i.e. around
8 Gigabytes). This DVD-ROM could then be distributed in a secure way
to all participants in the scheme, and the data could then (if necessary) be
copied to the hard disk of each user’s PC.

If we assume that the Diffie-Hellman prime p is 1024 bits long (i.e. 27 bytes),
then the DVD-ROM has the capability of storing of the order of 226 public
keys, i.e. around 70 million. Of course, it will take the trusted centre a little
while to generate this number of public keys, but generating Diffie-Hellman
key pairs is a relatively simple matter, requiring one random number and one
multi-precision exponentiation per key pair. With appropriate ‘hardware
assists’ it should be possible to generate 100 such key pairs per second. At
such a rate, generating 70 million key pairs would take around 1 week.

It remains to decide how many users one DVD-ROM of this type would
safely support, i.e. how many users can be supported without there being
too high a probability that two users will share the same key pair. Using
the formula above, we have n = 226 and

√
n = 213, and thus we need to

choose u so that exp(−u2/227) is close to 1. The value can be chosen using
Table 3.2; from this table it should be clear that, for at most 1000 users, the

6

probability of two users sharing the same key is under 1%.

Table 1: Probability that all users have distinct keys
Number of users (u) Probability keys all distinct

212 0.88
211 0.97
210 0.992

Of course, there are various strategies that could be used to safely expand
the number of users sharing a single DVD-ROM. For example, suppose
that identities are based on email addresses, and that the trusted centre is
responsible for allocating email addresses to new users. When allocating
a new email address iA, the trusted centre could first verify that f(iA) is
distinct from all previously allocated values; if there is a clash the trusted
centre simply allocates a slightly different email address.

Before proceeding we observe that schemes with similarities to the above
idea, specific to discrete logarithm based schemes, have been proposed by
Tsujii and Itoh [26] and Lee and Liao [14]. Note also that the scheme of Lee
and Liao possesses significant defects (see, for example, [25]).

4 Public key cryptosystems from symmetric prim-
itives

A number of techniques have been proposed to derive public key cryptosys-
tems from symmetric cryptosystems. We next review some of the more
significant of these. The interest in the resulting schemes stems mainly from
the advantages of such schemes in terms of speed of operation. However,
they do have the disadvantage that the size of the keys is quite large.

Any of these schemes can be combined with the technique described in
section 2 to yield an ID-based scheme based purely on symmetric primitives.
However, we describe below how, in certain cases, such combinations can be
made more efficient.

4.1 Signature schemes

A significant number of signature schemes based purely on one-way functions
(or other symmetric crypto-primitives) have been proposed. However, whilst
the number of schemes is relatively large, they all appear to be derived from
two main ideas, namely the schemes of Lamport [13] and Rabin [23].

These fundamental schemes are all examples of what have become known
as One-time signatures (OTSs). That is, a private key can only be used

7

to generate one signature. However, as we briefly outline below, a number
of multi-time signature schemes have been designed based on the original
Lamport scheme. We first review the Lamport scheme [13].

The idea behind this one-time signature scheme is that secret key material
is revealed dependent on the message to be signed. The signature is veri-
fied by checking that the key material corresponds to authenticated public
verification data of the signer.

In the Lamport scheme, to sign a message of n bits, m = m1m2 . . .mn, the
signer chooses 2n keys, K1,0,K1,1, K2,0,K2,1, . . . ,Kn,0,Kn,1 and publishes
the verification data h(K1,0), h(K1,1), h(K2,0), h(K2,1), . . . , h(Kn,0), h(Kn,1)
where h is a one-way hash function. The signature on m is the sequence of
n keys K1,m1 ,K2,m2 , . . . , Kn,mn . To forge a signature on a message distinct
from m would require the ability to determine a pre-image under h of some
element of the public key.

Many schemes based on this idea have been proposed (see, for example,
Merkle [19], Bos and Chaum [4], Bleichenbacher and Maurer [1]). The pri-
vate key is an ordered set K of random values and the public key is the
corresponding ordered set h(K) = {h(K)|K ∈ K} for some one-way hash
function h. The schemes vary according to the size of the public and private
keys, the size of the signature, and the computation required for signature
generation and verification. A message determines a subset of K (as in the
scheme of Merkle given in [19], or Bos-Chaum) or a partial computation
of some subset of h(K) (as in the scheme of Winternitz described in [19]
or Bleichenbacher-Maurer) and the signature consists of these values. The
signature is verified by checking that the revealed values correspond under
h to the appropriate verification values in h(K).

These schemes are secure against forgery because, without knowledge of the
private key, the ability to determine a signature on a message (even having
observed the signature on a different message) implies the ability to invert
a one-way function. They are one-time signatures as the signatures on two
distinct messages may allow the generation of a signature on a third message.

Perrig [21], Reyzin and Reyzin [24] and Pieprzyk et al. [22] have described
extensions of this one-time signature technique to multiple-time signature
schemes. In these schemes the key material revealed in some limited num-
ber, c say, of signatures cannot be used to forge a signature on another
message. This is because the determination (with non-negligible probabil-
ity) of a message whose signature may be inferred from the subsets of keys
that are revealed in c signatures implies the subversion of a one-way func-
tion ([21, 24]) or because the subsets of keys that are revealed in c signatures
satisfy a combinatorial property so that the union of c such subsets does not
contain any other subset ([22]).

8

We describe the Reyzin and Reyzin scheme for parameters of interest to us.
The signer’s private key consists of n = 225 keys K1,K2, . . . , Kn of 80 bits
each. The public key is V1 = h(K1), V2 = h(K2), . . . , Vn = h(Kn) where
h is a one-way hash function producing a hash of 160 bits. We select the
system parameter t = 32. To sign a message m, the hash H = h(m) is
used to seed a pseudo-random number generator to produce t log2 n = 800
bits: H0,H1, . . . , H799. These are used to determine t(= 32) integers ij =∑24

`=0 H25j+l2`, j = 0, 1, . . . , 31. The signature on message m consists of the
keys Ki0 , . . . , Ki31 . A signature K ′

0, . . . , K
′
31 on message m is accepted if

and only if h(K ′
j) = Vij for j = 0, 1, . . . , 31. Although the signature is quite

large, signature generation and verification are both very quick.

For n = 225 and 160-bit hashes, the public domain parameters will occupy
20 × 225 bytes, which will fit on a single CD-ROM. The probability that a
subset of t keys chosen randomly from a set of n keys lies with a given set of
r keys is bounded above by (r

n)t. Thus, if c = 219 signatures are observed so
that r = ct = 219.25 keys are known, then the probability that a signature
can be forged is less than (ct

n)t = (219.25

225)32 = 2−32. Thus the key pair can
be used for over half a million signatures.

Merkle [19] has a different approach to extending one-time signatures to
multi-signatures. His idea is to use the signature to also authenticate addi-
tional key material which can then be used to sign the next message. An
efficient way to do this is to use an authentication tree. Authentication trees
may also be used to efficiently authenticate the large volume of verification
data that one-time signatures generally have. This is discussed below in
section 4.3.

4.2 Public key encryption

Although there has been significant interest in developing signature schemes
using symmetric primitives, very little attention has been given to design-
ing public key encryption schemes from symmetric primitives. The puzzle
system of Merkle [18] was one of the earliest suggested methods of key
agreement. We describe this below and then present a public key encryp-
tion scheme based on a symmetric block cipher (Mitchell [20]) that uses a
related technique similar to that first conceived by Merkle (Weber [27]).

Merkle’s puzzle system is based on the existence of a collection of puzzles
each of which requires a specified amount of effort to solve. We quantify
this as the number n of steps the solver must perform to find the solution
to the puzzle, where a step is the effort required to create a single puzzle.
For example, given a symmetric block cipher with n possible keys, a puzzle
might be to find the key which was used to produce a cryptogram (from a
specified plaintext or family of plaintexts). One encryption is used to create

9

this puzzle; n encryptions of an exhaustive search solves it.

If user A wishes to establish a key with user B, then A creates n puzzles
and sends them to B, where each puzzle requires O(n) work to solve. User
B then chooses one of the puzzles at random and solves it. Both user A
and user B expend O(n) steps of effort, A to create the n puzzles, and B to
solve one of them. User A and user B now have common knowledge about
this puzzle, and may be able to use it as a shared key with an encryption
function. For example, A could choose n random keys from a key space of
size n, and use them to encrypt a series of strings of the form (c||x||f(x)),
where c is a fixed value (known to B), x is randomly chosen for each puzzle,
and f is a function known only to A; f could, for example, be implemented
by encrypting x with a fixed secret key known only to A. User B then
performs an exhaustive search to determine the key corresponding to one of
the ciphertexts; the constant c will enable B to know when the correct key
has been found. B now uses the value x from the decrypted puzzle as the
key index, and the value f(x) as the secret key. B sends x to A, who can
compute f(x), and hence A and B share a secret key. Another user would
have to solve n puzzles, thereby expending n2 steps of effort, to discover this
key.

We next describe a slightly modified version of the Merkle puzzle scheme,
which, like the Merkle scheme, is based on a simple trade-off between storage
and computation. An important aspect of all such schemes is that, as the
availability of cheap mass-storage grows, so the security of the scheme can
be increased. The advantage that this scheme has over Merkle’s scheme is
that the public key can be made a little smaller (typically around half the
size).

The scheme uses an n-bit block cipher, i.e. a block cipher operating on
plaintext and ciphertext blocks of n bits for some n. We write eK(X) for
the block cipher encryption of data string X using a key K, which we assume
has k bits. We write dK(X) for the corresponding decryption. Note that if X
is longer than the block cipher block length n then, in computing eK(X), we
assume that an appropriate mode of operation (e.g. Cipher Block Chaining
— see, for example, [17]) is used. There are two other parameters: m helps
determine the size of the public and private keys; and d helps determine the
size of public keys (details below).

Key generation is as follows. A user wishing to generate a private/public
key pair must obtain a set of m random keys for the specified block cipher,
K1,K2, . . . , Km say. These constitute the user’s private key. The user must
also choose a random data string X of dn bits, and then compute Pi =
eKi(X) for every i (1 ≤ i ≤ m). The sequence of values (P1, P2, . . . , Pm)
together with X then constitutes the user’s public key. Note that every
user should choose a different value for X (e.g. by incorporating a unique

10

identifier into X).

Suppose user A wishes to send user B an encrypted message, and A knows
that B’s public key is ((P1, P2, . . . , Pm), X). A now generates a sequence
of random block cipher keys: L1, L2, . . ., and for each such key generates
eLi(X) and compares the result with (P1, P2, . . . , Pm). Eventually a match
will be found, i.e. suppose eLj (X) = Pi, for some i and j. Given that d was
chosen to be sufficiently large, there is a very high probability that Lj = Ki.

User A now stops the search and retains Lj and i. This constitutes a key
shared with B and can be used to encrypt a message for B (as many times
as is required). Note that if A retains Lj and i, A can discard the remainder
of B’s public key.

To encrypt a message M for transmission to B, A simply computes eLj (M),
and sends the result to B, along with the integer i. On receipt of an en-
crypted string C, together with the parameter i, B uses key Ki to decrypt
it, i.e. B computes dKi(C).

The parameter d should be chosen so that the probability that two keys
will map the dn-bit string X to the same encrypted string is very small.
Assuming that the block cipher behaves in a random fashion, this can be
achieved by choosing dn to be a few bits longer then k.

The parameter m should be chosen to be as large as is feasible. The larger
m is, the more efficient the rest of the scheme is and/or the greater the
security level can be.

As for the scheme of Heng and Kurosawa [8], in which a (generalised) Diffie-
Hellman key exchange is performed to effect a (generalised) El Gamal en-
cryption, this scheme performs a key exchange to effect a block cipher en-
cryption. Heng and Kurosawa establish the security of their scheme under
the assumption that the Decisional Diffie-Hellman problem is hard, provided
that no more than k private keys are subverted. In our case we assume that
there is no more efficient way to attack the block cipher than to search for
the keys by creating tables of corresponding plaintext-ciphertext pairs and
comparing them with known pairs. Then, since the key used for encryption
is chosen by a random process, the probability that the adversary is success-
ful in decrypting a ciphertext is the ratio of the number of keys subverted by
this endeavour and m. For example, if m = 2

k
2 , then the expected number

of subverted keys is 1, and the probability that the adversary is successful
is 2−

k
2 .

Finally note that, as we have just discussed, this scheme requires that k has
the property that 2k/m block cipher operations is feasible for a legitimate
user. That is, implementation of the scheme requires the use of a block
cipher with a configurable key length. Under reasonable assumptions about
the security of the block cipher, this could reasonably be achieved by taking

11

a 128-bit block cipher such as AES [12], and converting a k-bit key to a
128-bit key. This conversion could, for example, be achieved by appending
a fixed (128 − k)-bit string, or applying a 128-bit hash function, to every
k-bit key.

4.3 Using Merkle hash-trees

The signature schemes and encryption scheme described above have public
keys which may consist of a large number of verification values, amounting
to a large amount of data. Moreover for the one-time signature schemes a
new public key is required for each signature. These public keys must be
authenticated by a trusted authority. A Merkle hash-tree may be used to
authenticate a large number of verification values or public keys without the
need for each of them to be signed by the trusted authority.

We mentioned in section 4.1 above Merkle’s one-time signature scheme, that
allows arbitrarily many signatures to be produced by authenticating addi-
tional key material with each signature. The hash-tree method we consider
here allows some fixed number, say 2s for convenience, of values to be au-
thenticated in advance of producing signatures.

Let T be the complete binary tree with 2s leaves. We may identify the
vertices of this tree with the 2s+1−1 binary strings of length at most s. The
leaves correspond to the strings of length exactly s and the root of the tree
corresponds to the empty string, ∅ of length 0. Two vertices are joined by an
edge if the lengths of their corresponding strings differ by 1 and one string
is a prefix of the other. Suppose that we wish to authenticate 2s verification
values Vj = h(Kj), j = 1, . . . , 2s. We associate each value with a leaf of
the Merkle hash tree by an appropriate relabelling so that the values are
denoted Vs where s varies over the 2s leaves (equivalently, s ranges over the
2s bitstrings of length s). We recursively define Vu for any string u of length
` < s by putting Vu = h(Vu0||Vu1) where u0,u1 are the two strings of length
` + 1 with prefix u, || denotes concatenation, and h is a hash function.

Now the trusted authority need only sign V∅ rather than the 2s values Vj .
A user authenticates Vs by providing Vs and Vu for the s vertices u joined
to a vertex on the path from s to the root ∅ but not on this path — that
is, the very values that allow the recursive evaluation of hash values along
the path to obtain V∅. So, in a scheme based on the Reyzin-Reyzin scheme
with parameters as described above, only 20 bytes (V∅) are signed by the
trusted centre. To enable verification of a signature, along with the the 320
bytes of the signature, Ki0 , . . . , Ki31 , the signer provides log2 n = 25 hash
values Vu (as determined by the hash tree) of 20 bytes each for each of the
t = 32 verification values Vi0 , . . . , Vi31 . This is an increased communication
cost, but provides a significant saving on the amount of material that the

12

trusted centre must sign.

5 ID-based signatures from symmetric primitives

In section 2 we described how to derive an ID-based cryptosystem from any
public key cryptosystem. Therefore, we can obtain an ID-based signature
scheme from any of the signature schemes based on symmetric primitives
described above. In this naive approach the trusted centre T generates n
public/private key pairs, where a private key Si consists of a set Ki of secret
keys and Pi = h(Ki). The public keys Pi may be authenticated using hash-
trees. A user A with identifier iA has public key Pf(iA).

In this naive approach we require T to sign a hash-tree root value V∅ for
each user. If the number of users is large then there may be efficiency gains
by using a hash-tree to authenticate these. A signer would then provide a
verifier with values in this hash-tree in order to authenticate the signer’s
root value.

For the Reyzin-Reyzin scheme described above, T would generate 225 private
keys and create a hash-tree for the corresponding verification values for each
user.

5.1 An optimised approach

In the naive approach the trusted centre sets up a large number of collections
of secret keys and verification values. The ID of a user determines which is
their private/public key pair. In this section we describe a scheme in which
a private/public key pair is obtained from a pool of secret key/verification
value pairs. When the number of users is large this may provide significant
savings on generation and storage costs.

The trusted authority T creates a large collection of (secret key, verification
value) pairs, where a secret key is a random bit-string Ki, e.g. of 80 bits, and
the corresponding verification value is h(Ki) for some one-way hash-function
h. The authority T then publishes all the values h(Ki), 1 ≤ i ≤ N (for some
large N) — these form the domain parameters for the ID-based scheme. All
users of the scheme must have a trusted copy of these parameters. They
may be signed by the authority using a hash-tree, for example.

We also need a one-way function f , which, given a bit string as input,
gives as output a n-subset of {1, 2, . . . , N}, where n is a system parameter
(1 < n < N). For example, if N = 2s, we could let the jth element of
the subset be the integer whose binary representation is given by the first
s bits of the output of f j (with duplicates eliminated, as necessary, and
generating additional s-bit values to replace them). This function f forms

13

the key-finding function of section 2.1. Suppose user U has identifier iU .
Then the public key for user U consists of the collection of n values h(Kj)
for which j ∈ f(iU). The private key for user U consists of the corresponding
collection of values Kj .

Each such private/public key pair can be used with either the Lamport
scheme or some multi-use variant of it.

As in our description of the Reyzin-Reyzin scheme, a user’s signature may
be forged with non-negligible probability if sufficiently many of the user’s
secret keys are known by another entity. In this scheme the main source
of information about a user’s keys is not the signatures that the user has
produced but the keys held by other users. A coalition of c users could know
as many as cn of the N secret keys. The probability that a random choice
of t of the user’s keys are among these is bounded by (cn

N)t. So, with n = 225

and t = 32, a coalition of 20 users would have a probability of forging of less
than 2−32, if N = 231. This is just 64 times the number of keys required for
one user, and so provides a significant efficiency gain for any large system
of users.

5.2 Another optimised approach

The scheme described in the previous section relied on the randomness of
the one-way function f (as well as the vigilance of the trusted centre when
distributing keys, as discussed in section 2.2) to ensure that the keys held by
a given user are not also held by a small group of other users. In this section
we describe how this may be ensured by design rather than by relying on
chance.

The scheme is set up by the trusted authority in the same way as the previous
section, but instead of using a randomising one-way function f to determine
which keys are given to a user, the trusted authority uses a mapping f
into the blocks of a suitable block design. The trusted authority chooses a
block design with u blocks and N points. Each block is a subset of n of
the points. The points of the design are associated with the (secret key,
verification value) pairs. The trusted centre assigns a user with identifier iU
the pairs corresponding to the points of the block f(iU).

As before, we are concerned that a coalition of c users should not know too
many of the keys held by another user. In terms of the design, this means
that for any c+1 blocks, B0, B1, . . . , Bc of the design, the cardinality of the
set

B0\ ∪c
i=1 Bi

should be sufficiently large.

Pieprzyk et al. [22] have described how to use cover-free families to make

14

the Reyzin-Reyzin scheme independent of the existence of one-way functions.
The designs we are interested in are cover-free families, and are used in a
similar way here. To be cover-free it is sufficient that the above cardinality
is always at least 1, so, in general, we require a stronger condition on the
collection of blocks.

If sufficiently large is taken to mean that

|B0\ ∪c
i=1 Bi| ≥ n

2
,

then the probability that a coalition of size c may forge a signature is at
most 2−t, as in the example of the Reyzin-Reyzin scheme considered above.

We may ensure that this cardinality is sufficiently large by ensuring that
the cardinality of the intersection of any two blocks is sufficiently small. Of
course, if the blocks are mutually disjoint then we simply have the naive
approach described above. The use of a design with non-trivial intersec-
tions requires fewer (secret key, verification value) pairs than the naive ap-
proach. The following geometric construction gives designs with the appro-
priate properties.

Consider an elliptic quadric in the projective geometry PG(3, q) of dimension
3 over the field GF(q) of q elements. This is described by a quadratic form
in the four projective coordinates that has exactly q2 + 1 solution points.
This set of q2 +1 points has the property that no three of them are collinear
(see Hirschfeld [9]). Dualising, the corresponding object is a set of q2 + 1
planes of PG(3, q) with the property that any two intersect in a line and any
three have a single point in common. Thus this configuration determines a
design with N = q3 + q2 + q + 1 points and q2 + 1 blocks (the planes) of
q2 + q + 1 points each such that any two blocks intersect in q + 1 points.
Such a design could be used in a scheme where there may be as many as
q+1
2 users in a coalition. This scheme has N = q3 + q2 + q + 1 whereas the

naive scheme would have N = q4 + q3 + 2q2 + q + 1.

For example, with q = 212, discarding one of the planes (nominating it to
be the plane at infinity of the projective space) and restricting ourselves to
the N = q3 = 236 affine points, we obtain a scheme for u = 224 users with
n = 224 and t = 32 which will be good for n

2t = 218 signatures and secure
against coalitions of 212

2 = 211 users.

The advantage of this scheme over the previous one is that there is a guar-
antee about what a group of colluders may know about the set of keys
belonging to a user. The disadvantage is that there are only as many pre-
defined private/public key pairs as there are blocks of the design, and there
is a chance that two different individuals will end up with the same key
pair. This means that, in this case, T must take similar precautions with
regard to the selection of parameters and the distribution of private keys as
discussed in section 2.3.

15

6 ID-based encryption from symmetric primitives

An ID-based public key encryption scheme is easily derived from the scheme
described in subsection 4.2. As for ID-based signature schemes, in the naive
approach the trusted centre generates n (public, private) key pairs where a
private key Si consists of a set Ki of secret keys and the public key Pi =
({eK(Xi);K ∈ Ki}, Xi) for distinct identifiers Xi. The public key of user
A with identifier iA is Pf(iA). As for signature schemes, the trusted centre
could use hash-tree methods to authenticate the public keys.

In an optimised approach to the generation of an ID-based encryption scheme,
the trusted authority T would generate a collection of triples (Ki, eKi(Xi), Xi),
i = 1, . . . , N . The authority T then publishes all the pairs (eKi(Xi), Xi),
1 ≤ i ≤ N .

A user determines the public key of user A with identifier iA by applying
the appropriate key-finding function to determine an n-subset of {1, . . . , N}.
The public key for user A consists of the collection of n values eKj (Xj) for
which j ∈ f(iA). The private key for user A then consists of the correspond-
ing collection of values Kj .

Analogously to the discussion in section 5.2, an alternative optimised ap-
proach would involve generating subsets of keys for individual users using
a block design instead of randomly. In this case, again as previously, the
key-funding function f would map the user name to a block of the design.

An adversary who is able to subvert r of the keys held by user A would have
probability r

n of decrypting a ciphertext. Otherwise the adversary would be
faced with the difficulty of breaking the block cipher.

7 Summary and conclusions

We have shown that any public key cryptosystem may be used to derive
an identity-based public key cryptosystem. In particular those public key
cryptosystems that are based on symmetric primitives may be so used. We
have given constructions of identity-based public key cryptosytems based on
symmetric primitives using this technique. Finally, we have shown that the
efficiency of such systems may be improved over that of the naive approach
by using both one-way functions and block designs.

References

[1] D. Bleichenbacher and U. Maurer. On the efficiency of one-time dig-
ital signatures. In K. Kim and T. Matsumoto, editors, Advances in

16

Cryptology — ASIACRYPT ’96, International Conference on the The-
ory and Applications of Cryptology and Information Security, Kyongju,
Korea, November 3-7, 1996, Proceedings, number 1163 in Lecture Notes
in Computer Science, pages 145–158. Springer-Verlag, Berlin, 1996.

[2] R. Blom. Non-public key distribution. In D. Chaum, R.L. Rivest,
and A.T. Sherman, editors, Advances in Cryptology: Crypto 82, pages
231–236, Santa Barbara, Ca., 1983. Plenum Press, New York.

[3] D. Boneh and M. Franklin. Identity-based encryption from the Weil
pairing. In J. Kilian, editor, Advances in Cryptology — CRYPTO 2001,
number 2139 in Lecture Notes in Computer Science, pages 213–229.
Springer-Verlag, Berlin, 2001.

[4] J. N. Bos and D. Chaum. Provably unforgeable signatures. In E. F.
Brickell, editor, Advances in Cryptology — CRYPTO ’92, 12th An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in
Computer Science, pages 1–14. Springer-Verlag, Berlin, 1993.

[5] C. Cocks. An identity based encryption scheme based on quadratic
residues. In B. Honary, editor, Cryptography and Coding, 8th IMA In-
ternational Conference, Cirencester, UK, December 17-19, 2001, Pro-
ceedings, volume 2260 of Lecture Notes in Computer Science, pages
360–363. Springer-Verlag, Berlin, 2001.

[6] C. Cocks. An identity based encryption scheme based on quadratic
residues. In B. Honary, editor, Cryptography and Coding, 8th IMA In-
ternational Conference, Cirencester, UK, December 17-19, 2001, Pro-
ceedings, volume 2260 of Lecture Notes in Computer Science, pages
360–363. Springer-Verlag, Berlin, 2001.

[7] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22:644–654, 1976.

[8] S.-H. Heng and K. Kurosawa. k-resilient identity-based encryption in
the standard model. In T. Okamoto, editor, Topics in Cryptology —
CT-RSA 2004, volume 2964 of Lecture Notes in Computer Science,
pages 67–80. Springer, Berlin-Heidelburg, 2004.

[9] J. W. P. Hirschfeld. Projective geometries over finite fields. Oxford
University Press, Oxford, 1979.

[10] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 11770–3, Information technology—Security techniques—Key
management; Part 3: Mechanisms using asymmetric techniques, 1999.

17

[11] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 14888–2, Information technology — Security techniques —
Digital signatures with appendix — Part 2: Identity-based mechanisms,
1999.

[12] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 18033–3, Information technology — Security techniques —
Encryption algorithms — Part 3: Block ciphers, 2005.

[13] L. Lamport. Constructing digital signatures from a one-way function.
Technical Report SRI-CSL-98, SRI International, Computer Science
Laboratory, October 1979.

[14] W.-B. Lee and K.-C. Liao. Constructing identity-based cryptosystems
for discrete logarithm based cryptosystems. Journal of Network and
Computer Applications, 27:191–199, 2004.

[15] T. Matsumoto and H. Imai. On the key predistribution system: A
practical solution to the key distribution problem. In C. Pomerance,
editor, Advances in Cryptology — CRYPTO ’87, number 293 in Lecture
Notes in Computer Science, pages 185–193. Springer-Verlag, Berlin,
1988.

[16] U. M. Maurer and Y. Yacobi. A non-interactive public-key distribution
system. Designs, Codes and Cryptography, 9:305–316, 1996.

[17] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, 1997.

[18] R. C. Merkle. Secure communications over insecure channels. Commu-
nications of the ACM, 21:294–299, 1978.

[19] R. C. Merkle. A certified digital signature. In G. Brassard, editor,
Advances in Cryptology — Crypto ’89, number 435 in Lecture Notes in
Computer Science, pages 218–238. Springer-Verlag, Berlin, 1990.

[20] C. J. Mitchell. Public key encryption using block ciphers. Technical
Report RHUL-MA-2003-6, Mathematics Department, Royal Holloway,
University of London, September 2003.

[21] A. Perrig. The BiBa one-time signature and broadcast authentication
protocol. In Proceedings of the 8th ACM Conference on Computer and
Communications Security, CCS 2001, pages 28–37. ACM Press, 2001.

[22] J. Pieprzyk, H. Wang, and C. Xing. Multiple-time signature schemes
secure against adaptive chosen message attacks. In M. Matsui and
R. Zuccherato, editors, Selected Areas in Cryptography, 10th Annual
International Workshop, SAC 2003, Ottawa, Canada, August 14-15,

18

2003, Revised Papers, volume 3006 of Lecture Notes in Computer Sci-
ence, pages 88–100. Springer-Verlag, Berlin, 2004.

[23] M. O. Rabin. Digitalized signatures. In R. DeMillo, D. Dobkin,
A. Jones, and R. Lipton, editors, Foundations of Secure Computation,
pages 155–168. Academic Press, 1978.

[24] L. Reyzin and M. Reyzin. Better than BiBa: Short one-time signatures
with fast signing and verifying. In L. M. Batten and J. Seberry, editors,
Information Security and Privacy, 7th Australasian Conference, ACISP
2002, Melbourne, Australia, July 3-5, 2002, Proceedings, volume 2384
of Lecture Notes in Computer Science, pages 144–153. Springer-Verlag,
Berlin, 2002.

[25] Q. Tang and C. J. Mitchell. Cryptanalysis of a technique to transform
discrete logarithm based cryptosystems into identity-based cryptosys-
tems. Technical Report RHUL-MA-2005-4, Mathematics Department,
Royal Holloway, University of London, March 2005.

[26] S. Tsujii and T. Itoh. An ID-based cryptosystem based on the discrete
logarithm problem. IEEE Journal on Selected Areas in Communica-
tions, 7:467–473, 1989.

[27] A. Weber. Secure communications over insecure channels (1974),
by Ralph Merkle, with an interview from the year 1995.
www.itas.fzk.de/mahp/weber/merkle.htm, January 2002.

19

