Preventing Phishing Attacks Using Trusted Computing Technology

Adil Alsaid and Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK.
e-mail: A.Alsaid @rhul.ac.uk

Abstract

Most secure web sites use the SSL/TLS protocol for server authentication. SSL/TLS supports mutual authentica-
tion, i.e. both server and client authentication. However, this optional feature of SSL/TLS is not used by most web
sites because not every client has a certified public key. Instead user authentication is typically achieved by send-
ing a password to the server after the establishment of an SSL-protected channel. Certain attacks rely on this fact,
such as web spoofing and phishing attacks. In this paper the issue of online user authentication is discussed, and
a method for online user authentication using trusted computing platforms is proposed. The proposed approach
makes a class of phishing attacks ineffective; moreover, the proposed method can also be used to protect against
other online attacks.

Keywords
PKI, SSL/TLS, Web browsers, e-commerce, TCPA, TCG, TPM, Phishing.

1 Introduction

Online user authentication is required by most web applications. The authentication level
that is required depends on the services being provided by a particular web application. For
example, a simple general purpose web forum may use cleartext user credentials for authenti-
cation. The authentication information may be stored on the user machine, e.g. using cookies,
for subsequent authentication without requiring the user to resubmit authentication data. By
contrast, in a security-sensitive online application (such as online banking), the use of a clear-
text credential would not be sufficient, since an attacker could capture the user credential by
monitoring the communications channel. In such a case a more secure authentication method is
required.

Phishing/Pharming/Web Spoofing (Felten et al. 1997, Geer 2005, Anti-Phishing Working
Group 2005) attacks are widely used to gather user personal information, including usernames
and passwords. One possible scenario for such an attack arises when an attacker creates a
spoofed web site that looks identical to a genuine web site, and convinces the victim to visit
the spoofed web site (e.g. by including a URL in a faked email). When the victim navigates
to the spoofed web site, an information gathering page is displayed to get the victim’s personal
information. Once the victim’s authentication credentials, e.g. username and password, have
been captured, the attacker can impersonate the user to the genuine web site. Other possible
scenarios exist; however all possible scenarios have the same main objective, i.e. the capture of
a user credential.

In this paper we propose a method to enable SSL client-side authentication using functional-
ity available in Trusted Computing Group (TCG) compliant platforms. Specifically, we propose
the use of cryptographic functions provided by the trusted platform module (TPM) present on

any TCG-compliant platform. The rest of the paper is organised as follows. Sections 2 and 3
review the Secure Socket Layer/Transport Layer Security (SSL/TLS) protocol and trusted com-
puting platforms. Section 4 briefly introduces a method to prevent phishing attacks using trusted
computing. A proposed method for online user authentication using trusted computing is then
discussed in detail in Section 5, and a security analysis is given in Section 6. Finally, Section 7
concludes the paper.

2 SSL/TLS

The SSL/TLS protocol provides data integrity and data confidentiality via the ‘record pro-
tocol’ and entity authentication by means of the ‘handshake protocol’. The part of the protocol
that is of interest here is the handshake protocol. The main task of the handshake protocol is
to provide entity authentication and to set up the parameters required for subsequent commu-
nications security. Specifically, this involves establishing the master secret and setting up the
CipherSpec.

One optional element of SSL/TLS that is of particular interest here is the CertificateRequest
protocol message, which can be used to request a client-side web browser to provide a public
key certificate for authentication of the client to the server. If sent by the web server, the web
browser replies by sending a copy of the client certificate selected by the user, and a proof of
knowledge of the associated private key, i.e. by signing the ‘CertificateVerify’ SSL handshake
message. However, this element of the protocol is typically not used, since most users do not
have personal public key certificates.

3 Trusted Computing and TPMs

In this section we introduce the functionality of those components of the TCG specifications
that are relevant to the protocol proposed in section 5. Detailed descriptions and specifications
of TCG can, for example, be found in (Mitchell 2005, Trusted Computing Group 2005). Note
that throughout this paper we assume the use of a TPM conforming to version 1.2 of the TCG
specifications.

3.1 Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) is the ‘root of trust’ for a trusted platform. It has
certain cryptographic capabilities, such as RSA key generation and encryption, SHA-1 hashing
and a random number generator. It is typically implemented in the form of a chip attached to a
PC motherboard. It contains a set of Platform Configuration Registers (PCRs) used to store and
report the state of the TCG-enabled platform. It has non-volatile memory that is used to store
private keys and identity information known only to the TPM. For privacy reasons, the TPM
can support more than one identity, as illustrated below.

3.2 TPM Identity

Every TPM has a unique RSA key pair called the endorsement key (EK). The EK would
typically be created by the manufacturer of the TPM, and then embedded into the TPM. The
private part of the EK (the PRIVEK) is stored in a TPM-shielded location and never leaves
the TPM. Access to the PRIVEK is achieved through the use of TPM capabilities, which are
exposed to software running on the host. The public part of the EK (PUBEK) could be used to
identify a platform, and hence export of PUBEK could be a significant threat to user privacy. A
TPM Attestation Identity Key (AIK) can be used to overcome the privacy concerns associated

with platform identification. An AIK is a 2048-bit RSA key pair used exclusively for signatures,
and such a key pair can be generated by a TPM at any time. A TPM may have more than one
AIK, each of which functions as a different pseudonym for the platform. In order to be able to
prove that an AIK belongs to a trusted platform, the TPM must obtain a certificate for the AIK
public key from a trusted third party, 1.g. a special entity known as a Privacy CA.

4 Preventing Phishing Attacks Using Trusted Computing

This section outlines a method to prevent phishing attacks. This high-level description is
followed by a discussion of existing solutions to this problem. A comparison of the suggested
method with these other approaches is then given.

4.1 Enabling Client-side Authentication

As discussed in Section 2, SSL/TLS client side authentication is typically not performed
because of the lack of a client public key certificate. In this section, a method to automate the
process of acquiring a client-side certificate is proposed, thereby allowing client-side authenti-
cation to take place. The proposed method utilises a subset of the features of a TPM conforming
to version 1.2 of the TCG specifications to create an SSL client-side certificate. The method is
outlined in Figure 1, and a detailed description of this method is presented in Section 5. The
approach we describe requires the client browser to interact both with third parties and with the
TPM in order to obtain the necessary certificate. To simplify the process for users, this could be
achieved simply by downloading and installing an appropriate browser plug-in (from a trusted
source).

4.1.1 Setup Phase

We suppose that the browser maintains a list of web site/certificate associations, which we
refer to as the certificate table. This ‘certificate table’ is used to send the appropriate client
certificate to a particular web site. The mapping list is not strictly necessary, and the user could
have one certificate that is sent to all web sites requesting a user certificate. However, having a
different certificate for each web site helps preserve user privacy.

When a web server requests a client SSL certificate, the web browser searches the ‘certificate
table’ for an entry that matches the requested web site. If there is no client certificate that
corresponds to the requested web site, the browser requests the TPM to create a new AIK,
using the TPM _Makeldentity command. Once the AIK is created, the browser sends the public
key part of the AIK to a Privacy CA along with evidence that the identity was generated on a
genuine TPM. The Privacy CA inspects the received value and verifies that it was generated
on a genuine TPM. It then signs the received public key using its private key, and sends the
resulting certificate back to the browser.

After receiving the public key certificate from the Privacy CA, the trusted platform generates
another key pair and certifies the newly created public key using the AIK private key (see
Section 5 for more details). The browser then sends the newly generated certificate to the web
server in response to the CertificateRequest SSL handshake protocol message.

The problem remains of securely associating the user identifier in the certificate with the
user name held by the web server. We would suggest that the following procedure is used to
‘register’ a user certificate. If the user has already established a user name and password with
the web site, then, once the user certificate has been received and verified by the server, and
the SSL connection established, the user name and password are transferred to the web server

(exactly as in the case where no client-side authentication is provided). Once the user name
and password have been verified, the name in the user certificate is stored by the web server in
conjunction with the user name. If no user name and password have previously been established,
then, once the SSL connection is established, the user name and password are transferred, and
again an association is set up in the server database between the user name and the name in the
user certificate. This combination of user certificate and username/password enables the web
site to use a two-factor process to authenticate the user. This provides an additional level of
security.

4.1.2 Using the Client Certificate

After completing the setup phase, mutual authentication can be achieved whenever neces-
sary. When the user visits the secure web site, the user certificate along with the user’s signa-
ture is sent to authenticate the user. In addition, and after successful completion of the SSL
exchanges, the web site may require the user to provide his or her password. Having two-factor
authentication minimises the risk of identity theft and the dangers of a phishing attack.

gﬂg 1. https request (SSL connection)
Tl 3. ldentityRequest message 2. SSL client-side certificate request
5 Bed| 4. PCAResponse message R 5. Client Certificate
E=d BdE
T Web Browser
Privacy CA Web Server

Figure 1: Obtaining a client certificate
4.2 Existing Solutions to Phishing Attacks

This section briefly reviews other solutions to phishing attacks.

4.2.1 Client Authentication

In a method proposed by Verisign, the user must obtain a public key certificate from a
certification authority and install it in the user’s personal certificate store. When client-side
authentication is required, i.e. through SSL client-side authentication, the browser prompts the
user to select a certificate from the user’s personal certificate store. The browser then sends
the selected certificate to the web server as part of the SSL exchange, in reply to the ‘Cer-
tificateRequest” SSL message, together with a signed CertificateVerify field. The web server
inspects the received certificate and the signature in the ‘CertificateVerify’ message, and grants
access accordingly.

This is a typical scenario for the use of SSL client-side authentication. There are two main
problems with this approach. Firstly, the user is required to generate a key pair and to obtain a
certificate for the public key from a trusted CA. This is a non-trivial process for a naive user,
especially as the public key typically needs to be transferred to the CA by some secure means.
Secondly, even if a key pair is securely generated, and a public key certificate successfully
obtained, the problem remains of storing the private key. Storing the private key unprotected on
the user PC leaves open the possibility of compromise.

Security tokens can be used to provide a secure and controlled storage medium for client
private keys. A security token is a small hardware device such as smart card or USB token.
Security tokens typically provide a range of key storage and cryptography functions. Security

tokens provide two-factor authentication, i.e. something you have (the token) and something
you know (the user password). The computing platform would need to be equipped with the
necessary hardware to interact with the token, such as a smart card reader or a USB interface.

4.2.2 Visual Server Authentication

In the approach proposed by Dhamija and Tygar (Dhamija & Tygar 2005), when a user
registers for an online service for the first time, he/she is requested to choose a unique image
that is known to the web site and the user. When the user tries to login by providing his/her
username, the site displays the user-chosen image to help the user visually authenticate the
server. If the user-chosen image matches the displayed image, the user continues by entering
his/her password. This method relies on the fact that spoofed web sites will not be able to
display the user’s unique image.

4.3 Advantages of the novel approach

The proposed method avoids the two main problems associated with the use of client-side
SSL authentication, as outlined in section 4.2.1. That is, the potentially problematic process of
generating a key pair and obtaining a public key certificate can be made completely transparent
to the user, and the problem of secure storage of the private key is solved by storing it within
the TPM. Moreover, the TPM provides means to control the use of the stored private keys. Of
course, use of a secure token also avoids some of these issues, but is nevertheless a potentially
costly and awkward solution, which can never be completely user-transparent.

In the visual server authentication method, the user is required to remember a web site/image
association to be able to visually authenticate a web server. Moreover, the method proposed
in (Dhamija & Tygar 2005) requires some changes to be made to both the web server and the
SSL protocol.

5 SSL/TLS Authentication Using Trusted Computing

In the following two sections the TCG-based approach to client-side authentication is dis-
cussed in greater detail. The description is divided into two parts, covering client certificate
creation and subsequent use of the client certificate to achieve client authentication to the server.

5.1 Creating Client Certificates

We first describe what happens when a client visits a server site for the first time (or at least
the first time that this novel authentication approach is to be used). Note that we are assuming
that the browser interacts with the TPM using the TSS and the required interfaces.

1. The browser executes the TPM_Makeldentity command to generate a new AIK key pair,
1.e. to create a new TPM identity. Only the owner of the TPM can create a new TPM
Identity, and owner authorisation is required (see Section 3.2). A successful execution of
the command causes a new AIK to be generated within the TPM, together with something
known as an identity-binding signature. An identity-binding signature is a special data
structure signed using the newly created AIK private key. The identity-binding structure
contains the newly created AIK public key, the new TPM name (pseudonym), and the
public key of the Privacy CA.

2. The browser then executes the TSS_CollateldentityRequest command to assemble all the
data required by the Privacy CA to attest to the validity of the newly created TPM iden-

tity, and then sends the IdentityRequest message to the Privacy CA. The IdentityRequest
message includes the identity-binding signature created in the previous step, and other
data such as an endorsement credential, a platform credential and a conformance creden-
tial, i.e. the TCPA_IDENTITY _PROOF. The IdentityRequest message is symmetrically
encrypted using a random session key, and the session key is asymmetrically encrypted
using the public key of the Privacy CA.

. When the Privacy CA receives the IdentityRequest message, it decrypts the session key
using its private key and then decrypts the message using the session key. It then in-
spects the message to make sure that it was generated on a genuine TPM. If the Privacy
CA is confident that the IdentityRequest message was generated by a genuine TPM, it
replies by sending the PCAResponse message. The PCAResponse message includes an
encrypted version of the identity credential, which is DER-encoded as an X.509 public
key certificate. The identity credential is encrypted using a secret session key, where the
secret session key is itself encrypted using the TPM PUBEK.

. The browser executes the TPM_Activateldentity command to obtain the secret session
key used to encrypt the identity credential. Since the session key is encrypted using the
TPM PUBEK, only the TPM can decrypt the session key using the PRIVEK. Moreover,
only the owner of the TPM can activate the new identity, since owner authorisation is
required.

. The browser executes the TSS_RecoverTPMIdentity command to decrypt the identity cre-
dential. The session key used to encrypt the identity credential and the encrypted identity
credential are passed as parameters to the command. If the command executes success-
fully, the TSS _RecoverTPMIdentity command returns the decrypted identity credential.

. The private part of the certified AIK, which never leaves the TPM, cannot be used to
sign data external to the TPM, as discussed in Section 3.2. Hence the received cer-
tificate cannot be used for client authentication in the SSL protocol. For this rea-
son, the browser should create another non-migratable key pair (B) by executing the
TPM_CreateWrapKey command, and then use the TPM _CertifyKey command to sign the
newly created key using the AIK created in step 1. According to the TCG specifications,
the output of the TPM _CertifyKey command is a signature over a TPM_CERTIFY _INFO
structure.

That is, although this signed string has some of the properties of a certificate, i.e. the
signature is computed over a public key, it is not in X.509 format. That is, it cannot
be used as a certificate in an SSL exchange. One possible method to obtain an X.509
certificate for use in the SSL client authentication protocol is for the TPM to provide a new
command that certifies keys and returns an X.509 certificate. However, we do not consider
such a solution further here as it would require changes to the TCG specifications, and
hence can only be a solution in the long term.

A second possible method is to use the Subject Key Attestation Evidence (SKAE)
X.509 certificate extension. The SKAE extension, as defined in (TCG Infrastructure
Workgroup 2005), includes the certified identity credential obtained in the previous step
and the TPM_CERTIFY _INFO structure, in addition to other fields. The web browser
creates a certificate request for the public part of the newly created key (B) using either
PKCS#10 or CRMEF, and includes the SKAE extension as an attribute. It then submits
the certificate request to a CA. When the CA receives the certificate request, it validates

Method TPM Change | Client Change | Server Change
TPM Command Yes No No
SKAE No No Yes
Certificate Translation No No No

Table 1: Comparison of X.509 Certificate creation methods

it and accordingly issues an X.509v.3 certificate with the SKAE extension and sends it
back to the web browser. In order to use this method, the web server must be aware of the
SKAE extension in order to validate and process the TPM-created public key certificate
(i.e. the signed TPM_CERTIFY _INFO structure). One possible way to avoid the inclu-
sion of the SKAE extension in the final certificate is for the CA to validate the SKAE
extension before issuing the certificate and then, if valid, issue a certificate without the
SKAE extension. In such a case, the web server would not need to be aware of the SKAE
extension.

A third possible method is to generate an X.509 certificate from the signed
TPM_CERTIFY _INFO structure using a certificate translation service (Borselius &
Mitchell 2000). In this method, both the identity credential certificate and the
TPM_CERTIFY _INFO structure are sent to a certificate translation server. The trans-
lation server inspects the received values and, if valid, converts the two structures into
a single X.509 certificate. The use of a certificate translation server eliminates the need
for web server changes, unlike in the SKAE extension method, since the web server will
receive a normal X.509 certificate without any extensions. Table 1 summarises the three
approaches for the generation of an X.509 certificate.

7. After creating the certificate, the browser requests the TPM to sign the ‘Certificate Verify’
SSL protocol message using the newly generated key, to provide a proof of possession
of the certificate private key. The browser makes a call to the TPM _Sign command and
passes it an MDS5 hash of the handshake protocol messages. The browser uses the result to
create the ‘Certificate Verify’ protocol message which is sent to the web server, along with
the certificate created in the previous steps, in reply to the CertificateRequest SSL/TLS
protocol message.

8. In addition to the SSL client-side authentication, the web server may request the user to
provide a username/password combination to support two-factor authentication.

5.2 Using a Client Certificate

When the user visits a secure web site that requests a client-side certificate, the browser
searches the sites/certificates mapping list for a certificate that corresponds to the visited web
site. If no certificate is associated with the visited web site, the browser creates a new certificate
as described in Section 5.1; otherwise, the browser executes the following steps.

1. The browser executes the TPM_LoadKey command to load the key associated with the
visited secure web site.

2. The browser then executes the TPM_Sign command to generate the ‘CertificateVerify’
SSL handshake protocol message, and sends the certificate and the ‘CertificateVerify’
protocol messages to the web server to authenticate the client. The SSL/TLS protocol
messages continue in the normal way, as described in Section 2.

6 Security Analysis

Secure storage for certificates and private keys is achieved by using the secure storage ca-
pabilities of the TPM. According to the TCG specifications, the private part of the AIK and the
non-migratable keys never leave the TPM. Moreover, the use of the keys can be controlled by
setting a password, or ‘authdata’, at the time of creation. The ‘authdata’ should be presented to
the TPM whenever use of the keys is required.

Mobility of client certificates can be achieved by using the Certifiable Migratable Key
(CMK) feature introduced in TPM version 1.2. The migration process is controlled to en-
sure that the key is moved between two TPMs. To create a CMK, the TPM_CMK CreateKey
TPM command must be executed. The TPM_CMK CreateKey command is similar to the
TPM_CreateWrapKey command, but owner authorisation is required. To migrate the key from
one trusted platform to another, the TPM_MigrateKey command needs to be executed.

7 Conclusions and Future Work

This paper proposes a method for online user authentication using trusted computing. The
proposed method requires no changes to be made to web servers or the SSL protocol; however,
a Web browser (or a browser plugin) that supports a TCG-complaint platform is required. The
proposed method achieves two-factor authentication by using both the client-side certificate and
a username/password combination for authentication. In order to create a client certificate, the
proposed method relies on a trusted third party, i.e. the Privacy CA. A prototype of the proposed
trusted computing based solution is currently being planned.

Another possible method to authenticate clients with a TCG-enabled platform is to use
Direct Anonymous Attestation (DAA) (Brickell et al. 2004). Using DAA to create a client
SSL certificate requires changes to the SSL/TLS protocol, as discussed in (Balfe et al. 2005).
The use of DAA to authenticate a user to a web server is a topic for future research.

8 References
Anti-Phishing Working Group (2005), Phishing Activity Trends Report2. http://www.antiphishing.org.

Balfe, S., Lakhani, A. & Paterson, K. (2005), Securing Peer-to-Peer networks using Trusted Computing, in C. J. Mitchell, ed.,
‘Trusted Computing’, IEE Press, pp. 271-298.

Borselius, N. & Mitchell, C. J. (2000), Certificate translation, in ‘Proceedings of NORDSEC 2000 — 5th Nordic Workshop on
Secure IT Systems’, Reykjavik, Iceland, pp. 289-300.

Brickell, E. F., Camenisch, J. & Chen, L. (2004), Direct anonymous attestation., in V. Atluri, B. Pfitzmann & P. D. McDaniel,
eds, ‘Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004’, ACM, Wash-
ingtion, DC, USA, pp. 132-145.

Dhamija, R. & Tygar, J. (2005), The Battle Against Phishing: Dynamic Security Skins, in ‘Symposium On Usable Privacy and
Security (SOUPS) 2005°, ACM, pp. 77-88.

Dierks, T. & Allen, C. (1999), The TLS Protocol 1.0, RFC 2246, Internet Engineering Task Force.

Felten, E. W., Balfanz, D., Dean, D. & Wallach, D. S. (1997), Web Spoofing: An Internet Con Game, in ‘Proceedings of 20th
National Information Systems Security Conference’, pp. 95-103.

Geer, D. (2005), ‘Security Technologies Go Phishing’, IEEE Computer Magazine 38(6), 18-21.
Mitchell, C. J., ed. (2005), Trusted Computing, IEE.
TCG Infrastructure Workgroup (2005), Subject Key Attestation Evidence Extension Specification Version 1.0.

Trusted Computing Group (2005), TPM Specification, Version 1.2.

