
SWITCH MINIMISATION FOR A SIMPLE
BIDIRECTIONAL NETWORK

each with the minimum number of switches, are given in
Newbury's recent letter.5

Note that, for the case n = k, the above definitions corre-
spond precisely to those used earlier by Mitchell and Wild.1.2
An RSN(n, n) is therefore the same as an R2BSN(n),1 or an
RSN(n).2

Indexing terms: Switches, Switching and switching circuits,
Networks

The letter describes a method for generating a one-stage,
one-sided switching network with the minimum number of
switches for any required level of connectivity. The fact that
the method generates optimal networks is established by
proving appropriate lower bounds. This generalises recent
work of Newbury.

Theoretical results: We first give two lemmas generalising
lemmas 1 and 2 of Reference 1.

Lemma 1: In an RSN(n, k) every crosswire must be connected
by switches to at least 2n + 1 -~ subscribers.

Proof: Suppose crosswire x is connected by switches to fewer
than 2n + 1 -k subscribers, i.e. there are at least k subscribers
not connected to x by a switch. Let

QkQl' Q2'

be k such subscribers. Let

Ri' Rz, , Rk

be k subscribers distinct from Ql' ...,
following k disjoint pairs of subscribers:

Qt, and consider the

Introduction: A number of recent papersl-4 have considered
the problem of minimising the number of switches for a
certain type of one-stage, one-sided, rearrangeable switching
network. In these papers it was shown that, if such a network
is used to connect 2n subscribers, then at least n2 + 2n -1
switches are required. Moreover, suitable networks can be
devised having this number of switches for every value of n.
For small bidirectional networks this appears to be a poten-
tially useful technique.

In a recent letter,S Newbury considered the minimum
number of switches for the same type of network with one
modification; he relaxes the constraint that n connections
must be possible simultaneously. When n = 4 he then gives
the minimum number of switches for each possible case, where
these bounds have been deduced from exhaustive computer
search. In this letter we give mathematical proofs of
Newbury's bounds, extend them to cover all values of n, and
construct switching networks having this minimum number of
switches for every possible case.

{Ql' R1}, {Qz, Rz}, , {Qt, Rt}

For each pair, crosswire x is not connected by a switch to at
least one of the two subscribers, and hence we have a contra-
diction. The lemma follows..,

Lemma 2: In an RSN(n, k), at most one crosswire is connected
by switches to precisely 2n + 1 -k subscribers.

Notation and definitions: We first review the relevant defini-
tions. We are concerned with the situation where 2n sub-
scribers are connected using k crosswires (k ~ n), where each
subscriber is connected by a switch to some (or all) of the
crosswires. For convenience let the 2n subscribers be labelled:

Proof: Suppose crosswires x and yare both connected to
exactly 2n + 1 -k crosswires. Let T be the set of subscribers
connected to x by a swit::h and let U be the set of subscribers
connected to y by a switch. Suppose there are s subscribers in
both T and U; then there are 2n + 1 -k -s subscribers in T
and not in U (and vice versa) and 2k + s -2n -2 subscribers
in neither T nor U.

Let
PI, P2, , P2n

and let the cross wires be labelled:
Qt, Q2' , Q2n+

be the subscribers in T which are not in U, and let

Ri, R2, R211+ I-i-.

We call such an arrangement a I-stage, I-sided switching
network.

If the network has the following additional property then
we call it rearrangeably nonblocking (or just 'rearrangeable').
For every set of k disjoint pairs of subscribers

be the subscribers in U which are not in T. Next let

{Pf(lJ' Pf(2J, {Pf(3J' Pf(4J, ..., {Pf(2t-1J' Pf(2tJ}

say (wherefis a one-to-one function from {1, 2, ..., 2k} into
{1, 2, ..., 2n}), there exists an ordering of the k crosswires

WI, W2, ..., W2t+s-2n-2

be the subscribers which are in neither T nor U, and let

Xl, X2. X2k+s-2.

be any collection of 2k + s -2n subscribers which are both T
and U. Now consider the following k disjoint pairs of sub-
scribers:

Xg(ll' Xg(2)' ..., Xg(k)

say (where g is a permutation of 1, 2,
subscriber crosswire pairs

, k), such that both the

(Pj(2i-1!' Xg(i» and (Pj(2i>' Xg(i» {Q1' R1}, {Q2' R2}, ..., {Q2n+1-t-., R2n+1-t-.}

are connected by a switch for every i (1 ~ i ~ k). That is, for {WI, Xl}, {W2, XJ, ..., {W2k+,-2n-2' X2k+,-2n-J

every possible set ofk telephone calls, each call can be assign- {X2k+s-2n-l' X2k+s-2n}
ed to a unique crosswire having switches in the appropriate
two places. However, if some calls cease and the correspond- It is straightforward to see that, apart from the last pair, no
ing subscribers need to be reconnected in a different way, pair of subscribers is contained in either T or U. This imme-
some rearrangement of existing calls onto different crosswires diately gives a contradiction and the lemma follows.
may be necessary (hence the term 'rearrangeably'
nonblocking). Using these two lemmas we have the following theorem.

If a network satisfies the above property then we call it a
1-stage, 1-sided rearrangeable switching network for 2n sub- Theorem 3: In any RSN(n, k) there are always at least
scribers and k crosswires, or an RSN(n, k) for short. For every
positive integer n, and every k (1 ~ k ~ n), we are concerned 2nk -(k -1)2
with finding the minimum number of switches for an RSN(n,
k). Examples of an RSN(4, 1), and RSN(4, 2) and an RSN(4, 3), switches.
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and there will be no need for backtracking.If we put k = n, we obtain theorem 3 of Reference 1 as an
immediate corollary. In addition, if we put n = 4, we obtain
the bound given by Newbury.s We now show how an RSN(n,
k) can be constructed which has this minimum number of
switches for every nand k (1 ~ k ~ n).

Concluding remarks: We have therefore completely solved the
problem of constructing switch-minimal networks of the type
described. However, this does not completely solve the switch
minimisation problem, as has been observed elsewhere.s.6 It is
conceivable, although perhaps unlikely, that the same degree
of connectivity could be achieved with fewer switches if more
than k crosswires are used: this would remove the require-
ment for every crosswire to be used when connecting k pairs
of subscribers. For certain small cases this has been shown not
to work,s.6 although this is by no means conclusive. It is
certainly an interesting and nontrivial topic for further
research.

Construction method: We now show how to construct an
'optimal' RSN(n, k). First, construct an RSN(k, k) having the
minimum number of switches, i.e. k2 + 2k -1, using existing
methods.! To this network add a further 2n -2k subscribers,
and connect everyone of these new subscribers to the existing
k crosswires by a switch. The fact that this results in an
RSN(n, k) is straightforward to establish. Moreover, this
network has a total of

(k2 + 2k -1) + (2n -2k)k = 2nk -k2 + 2k -1
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switches. This is the minimum established in theorem 3.

Assignment procedure: It has been established2 that the 'aug-
menting matching algorithm' can be used to rearrange con-
nections in an RSN(n, n) so that new connections may be
made without interrupting existing connections. The same
method will work in an RSN(n, k) with k < n.

Also described in Reference 2 is an assignment procedure
for the minimal RSN(n, n) constructed in that Reference,
which makes correct choice of connection route without back-
tracking, provided all connections are known in advance. This
procedure may be adapted to give a procedure with the same
property for the minimal RSN(n, k) constructed from a
minimal RSN(k, k) as above. This may be done by initially
applying the first part of the original procedure to those pairs
of subscribers contained in the embedded RSN(k, k). As the
subscribers of the RSN(n, k) which are not in the embedded
RSN(k, k) are connected by a switch to all k crosswires, there
is no difficulty in assigning crosswires to the remaining sub-
scriber pairs (as in the second part of the original procedure),
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