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CHAPTER 3 -GROUP DIVISIBLE DESIGtiS
-~ ~

In this Chapter we consider group divisible designs; in

particular ~~e study the properties of the duals of such designs.

Bose and Connor, [14] first introduced the concept of a

GD d..esign. One main reason for introducing these nesigns ~~as

for ~.]ork in the design of ex~eriments; in this context ~~e often

need structures TNith given parameters. Unfortunately 2-designs

(or B.I.B.D's) with suitable parameters do not al~~ays exist, and

GD designs are in some sense the "closest" to 2-designs.

Connor in (18] studied symmetric GD designs and gave hounds

on the intersection numbers of these designs as ~!Jell as giving a

sufficient condition for a symmetric GD design to h..ave a GD dual.

Agrawal, [2], (among others), gave bounds on the intersection

numbers of all GD .1esigns and Shrikhande and Bhag~~andas, r 45] ,

derived a further sufficient condition for a symmetric GD design

to have a GD dual.

Apart from this ~A]ork, it remains an open question as to ~1hich

symmetric GD designs have a GD dual. The only symmetric GD

design kno~r.m to the author ~~hich does not have a GD dual is the

SRGD design to be founn in [181, and hence it seems possible that

all symmetric RGD designs ~ave a GD dual.

Symmetric GD designs ,~i th a GD dual have been studied by

several authors. In particular, they ha..ve been studied in

connection ~'1i th Baer suhdesigns of symmetric 2-designs hy Bose

and Shrikhande, [15} and Bose, [13]. The underlying theme of

this Chapter is the study of such GD designs; firstly necessary

.+'.,.,.,.", ""'~.". "_~"'jL "~""."..~.""" .,~,--, ~,."...,"



-57-

and sufficient conditions are ohtained for a GD design to have a

GD dual, and second.ly, properties of such designs are examined.

In Section 3.1 general properties of the dual of a GD design

are considered; the known results on bounds on the size of

intersection numbers of GD designs are listed and Some new results

of this type are obtained. t\t the end of this section a result

of Connor's is generalisen and some useful corollaries are

obtained.

Gn designs having only two intersection numbers are discussed

in Section 3.2. ~recessary and sufficient conditions are given

for such a design to have as its dual a PBf)(2), and for such..

designs further necessary and sufficient conditions ~re obtained

for the dual to he group divisible. Lastly the properties of GD

designs with GD duals are inve.stigated.

In Section 3. 3 '~e obtain two sets of necessa~T and sufficient

conditions for a symmetric GD nesign to have a GD dual. Further-

more, two r-7ell kno~m results giving sufficient conditions for a

symmetric design to have o. GD dual are derived usirtg results

obtained pl~eviously, and finally we derive two ner~ resul ts ~7hich

give further sufficient conditions of this type.

~ve assume that ~ is a GD design throughout, and also that

A'>O; (hence 2 is connected and r,k>1).
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3.1 Intersection Nu.rnbers of Group Divisible D~s!gn~

There are many results giving hoUnds on the intersection

number~ of GD designs, and we nO~.1 give a summa~' of such results.

Note that some of these bounds have been established for larger
,

classes of designs, of which GD designs are a special case; in

particular Agra~1al, f2J, has obtained hounds on the intersection

nlmbers of all i-designs in terms of the eigenvalues of AAT

(where .~ is an incidence matrix of the design in question).

Trivially 0 ~ Ixnyl ~ k-1 for every pair of distinct blocks

x,y of a design.

Result 3.1. 1 (f~grar,ral, r 2l) If x,y are t~vo distinct blocks

of Q, then :-

(i) If A<A' then k-r+A ~ IXr"1y1 ~ 2A'V/b -2t(A' -A)/b

-(};:-r+A);

(ii) If A> A' then (}(-r+A) -9.,(A-A') ~ Ix'Y! ~ 2A'v/b

+ .~(A-A') -(k-r+A).

Remarks The hounds of Result 3.1.1 ~~ere originally given in

a slightly different form, hut the hounds above can easily be

obtained from those of [2) by application of Result 1.4.1(ii).

Saraf, [37J and Shw;, [3 8J have obtained similar results, but

t\.grawal in [2] and [3J has shoT;m that the hounds above are in

every case at least as good.

For the s~~etric case (i.e. if v=b) ~le h~_ve:

Result 3.1. 2(John,~_[_~ If Q is a symmetric SRGD design

and x,y are two distinct blocks of Q, then :-

). ~ Ix~f ~ 2).'-).-1.

, "'.c"""",.i6f~Iif_~,-
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Remarks John established his upper bound hy shoTving that in

the symmetric SRGD case, the upper bounds of Connor, [18]; Saraf,

[37) and AgrarA!al, [2], all have integer pa.rt 2),' -),-1, and hence

are all equivalent. John ~1ent on to sho'~ that these bounds are

;'best possible" by constructing a family of SRGD desip;ns whose

intersection numbers attain both the bounds of Result 3.1.2.

Result 3.1. ~ (go~nor2 r 1iLL. If Q is a symmetric RGD design and

x,y are t,~o distinct blocks of Q, then:-

(i) If ).<).' then A ~ Ixr'!yl ~ >..' (r->..)/(r2-v>..');

(ii) If >"»" then A' (r-A)/(r2_"A' ) ~ Ix!')yl ~A.

There also exist results similar to those of Majumdar, [32],

(see Result 2.5.1), for certain GD des;.gns.

Resu1 t3.1. 4 (Agrav.7al) [2J) Suppose x,y are two distinct

blocks of Q. If A<>'" and Ixnyl = k-r+A or if

).>A' and !xnyl = (k-r+A) -9,,(>"-A') then Ixnzl = /ynzl for every

block z (z*x or y).

_Another similar result is Result 2.2.7, part of rnhich ~1e

restate here for completeness.

Result3.1.5(Sa~af,L371) If ~ is a SRGD design and x,y are

two distinct b].ocks of .!?, then' xny I = k-r+).

if and only if Ixnzl = Iynzl for every block z (x*x or y).

Agrawal, [2J and Neumaier, r 33] have obtained further results

of this type for general i-designs.

t'le now prove some results sl.milar to those of Connor, [18].

The method of proof employed here is a generalisation of a proof

(due to R. M. ~,\1ilson) of analagous results for 2-designs. \~e first

establish :-
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L~mma 3.1.6 Suppose A is a vxh matrix ~'1i th linearly independent

ro~.,TS .Then: -

(i) P = AT(,,'\AT)-1A is the matrix of the orthogonal

. t . f mbpro] ec l.on o. "' onto the subspace ro~"1(A) = U, say;

(ii) Q = I -P is the matrix of the orthogonal projection

mb .I.-of {1'- onto U .

11) bProof (i) Suppose ~ E ~. Then. ~7e may (uniquely) express

~ in the form .?£ = ~1 + ~2 ~¥here ~1 E U and ~2 E U""'. Hence

, JR v T T~1 = xt, for some y E and ~2 = Q .

Then ~P = (.?£1+~2)P = ~1AT(AAT)-1A + ~2AT(AAT)-iA

T T -1 T -1= yAA (AA) A + Q (_M) A = yA = ~1.

(ii) Trivial. tl

~e~a3.1.7 If Q is as in Le~ma 3.1.6 and Q1 is any principal

sub~atrix of Q, then :-

(i) IQ1f?:. 0;

(ii) If order (Q1) > b-v then fQ11 = 0; (t4here the order

of Q1 is the size of Q1).

Pr2of By Le~J11a 3.1.6, every vector in U is an eigenvector for

Q of eigenvalue 0, and eve~l vector in U~is an eigenvector for Q

of eigenvalue 1. U has dimension v (since A has linearly

independent rows) and hence TJ..J...has dimension b-v. So rank

Q = b-v and Q is positive semi-definite since all its eigenvalues

are non-negative.

(i) If Q1 is a principal submatrix of Q, then Q1 is positive

semi-definite since ~Q1~T = ~'Q~' T ~ 0; ~7here ~t has the

entries of ~ in the places corresponding to the rO~7S and

col\lInns of Q1' and zeros else~.,There. SO IQ11 ~ O.
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(ii) rank Q1 ~ rank Q = b -v. So if Q1 has order greater

than b-v, then IQ1! = o. a

~!Je nOtv use Le~~a 3.1.7 to obtain t~'70 results of Connor's

on RGD designs. YAle first require:-

~emma3. 1.~~ If ~ is a RGD design and A is an incidence matrix

for II associated ~~ith the group division, then:-

(AAT)-1 -rk(rk-vA')I -A' (r-A)J -rk(A-A')K-rk (rk-vA' ) (r=A) -

t,yhere K = Id Q JR, and Q indicates toe Kronecker Product.

Proof As ~re observed in Section 1.4 above

MT = At J + (A-A' )K + (r-A)I. Hence the product of MT and

the expression on the R.H.S. of the above equation =

[rk(rk-VA' ) (r-A)I+A' (rk{ (rk-VA' )-R.(A-A' )) -( VA' +(r-A).-,t?,(A-A' »

(r-A))J+rk(A-A')( (rk-"A' )-9,(A-A' )-(r-A)KJ Irk(rk-vA' )(r-A) = I

(applying Result 1.~.1(ii». n

Theorem 3.1.9 and Corollary 3.1.10 belot~ are due to Connor [18).

!h~orem 3.1.9 Suppos~ that Q is regular, and that Q = (qij)

is a bxb matrix, ~'ri. th

d, , ~'" ,
q =[A (r-A)+(A-A ) l. S1 S1 '~'(rk-VA ) s(u,w)J/(rk-VA )(r-A);Uti! . 1 UU ~..lWJ.=

where s is as defined in T4emma 2.2. ~ and
U~]

s(u,t~) = l k-r+A ~f u .T,y ~ .If Q1 is any principal

s 1f u * ~,7 J
uw

submatrix of Q, then ;-

(i) IQ1I ~ 0;

(ii) If order (Q1) > b-v then IQ1I = o.

,
,
;I.
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~Q;lary 3.1.~Q If Q is symJnetric and regular then :-

d .2 2
(i) L (s1) = (r -VA') + ~.A' ;. 1 uu

1.=

d .2
(ii) s W = A'+ (L S1 si -tA')(A-A')/(r -VA') for every

u . 1 uu ~~71=

U , ':"1 ( 15.u , w5.b) .

~!22f (i) Let Q1 be any principal submatrix of Q of order

one, i.e. Q1 has as its single entry:

d .2 2 2
[A' (r-A )+(A-A' ).r (s~u) -(r -VA')A] /(r -VA' ) (r-A).

1=1

By Theorem 3.1.9(ii) this entry must be zero, and (i) follot~s

after applying Result 1.4.1(ii).

(ii) Let Q1 be any principal submatrix of Q of order two.

By (i) above, Q1 has diagonal entries ~ero, and its off diagonal

entries are both

d, ..2 2
[A (r~A)+(A-A') L S1 s1. -(r -VA')S i /(r -vA' )(r-A).

i=1 uu ~'l\",7 lit':

Agaj.n, using Theorem 3.1.9(ii), these entries must be zero, and

(using Result 1.4.1(ii» (ii) follows. a

More generally ~ve have:-

Coro~lary 3.1.11 If Q is regular then :-

d
L (si ) 2 > (rk-vA') + tA' -(r-k) (rk-vA' )/(A-A' ).

i=1 uu -
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(ii) If ;1.>;1.' and Ixnz! = !ynzJ for every block z, then

I xlyl ~ k-r+;1.;

(iii) Any two of the followin~ imply the third:

(a) ! x(')yl = k-r+;1.;

(b) !xlIyl = Iynzl for every block z (z:f:x or y) ;

(c) Ix:~p~1 = IvIP. ! for every class P. (1<i<d).-oJ. -]. -]. --

Proof The Theorem follows immediately from Lemma 3.1.12

since k-s > O. nuw -

Remarks (i) gives the lo,.,rer bound of Result 3.1.1(i) and a

stronger result than Result 3.1.4(i). If Q is SRGD then

A<A' and Ixnp.1 = lynp.1 for every x,y and P.~ so in this
-]. -]. ~ -].

case (i) above just becomes ?,esul t 2.2.7.

Theorem 3.1.14 If D is a symm,etric RGD design and x,y are---

two distinct blocks of n, then :-

(i) If ;1.<A' then A ~!x:lyl ~ ;1.+R,(A'-;1.);

(ii) If A>A' then ;1.-~(;1.-;1.') ~ !x:'")yJ ~ A)

(iii) Ixnzl = Iynzl for every block z (z*x or y) if and

only if f xnyJ = A-t (A-A' ) or I xcy! = ;1..

Proof Set x = x , y = x. In the symmetric case Lemma
u ~N

3.1.12 gives :-

b 2 d. 2
t~1(Sut-St~t) = ().-;1.' )i~1(S~uS~~) + 2(Suw-A)(r-su~v).

t:f:u
t:f:~.r

Usin~ Corollary 3.1.10 vJe also have:

,j ..? 2
r (s]'-sJ. )'- = 2(A(r-A)+(;1.-;1.' )9.;1. -(r--vA')S )/(;1.-;1.').. 1 uu v.n"1 U~'7

].=
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Th.e following two corollaries lead to two ~..lell kno¥m

results on symmetric GD designs; (see Section 3.3. belo~~).

Corollary 3.1.18 If ~ is a symmetric GD design and-~ -

I A-A' I = 1, then Q has precisely t~-.10

intersection numbers: A and A'.

Proof Since A, A' are consecutive integers every term on

the L.H.S. of the equation of Theorem 3.1.17 must be non-

negative, and so Q has at most two intersection n~~bers:

A and A'. But both these values must occur or else Q* is

a symmetric 2-design, and hence Q is a 2-design. ~

~orollary 3.1.19 If ~ is a symmetric R.GD desi~n and

(r2-vA' _A-A') = 1, then Q has precisely

two intersection numbers: A and A'.

Proof Bv Corollary 3.1.10Cii), s =A' +a(A-A' )/(r2-vA')
-u,.]

where a E Z. Since (r2-vA' ,A-A' ) = 1, a/(r2-vA' ) E Z and so

s = A' +b (A-A' ) ; 1:.1 E z. So s cannot lie between A and
u~-.1 u~",

A' and so, as in the previous corollary (sij-A)(si;-A') ~ 0

for eve~J i,j. 1'he resul t follo~'IS immediately as in

Corollary 3.1.18. ~

Finally, we also have two further corollaries:

Corolla~T 3.1.20 If D is a svmmetric GD design then either :-~ -..

(i) 12 has precisely two intersection numbers: A and A';

or (ii) There exist blocks x,x' ,V,y' satisfying:

.I x~' I < A' < I yr~l' I and I x ")x,' , * A * I y;y' , .

Proof Suppose A<A'. Then, if I x:")y I ~ A' for every pair of
v v ,

blocks x,y, all the terms of .r .i (si J.-A)(sij-A ) are non-
J.=1 J=1

j*i

,." .,.;u
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positive (by Result 3.1.1(ii», and so A,A' are the only

intersection nQmbers. If t~.is is not the case then there

exist blocks y,y' with A<A' <!yny'!, and hence the sum above

has a positive term. So, by Theorem 3.1.17 and Result 3.1.1Cii)

there exist blocks x,x' ~.;rith A<!X'OC' I<A'.

A similar argument holds if A>A' , and the CoroJ_lary

follo1:..Js. X!

Corollary ~.1~21 Suppose 2 is symmetric. Then if

(i) A<A' and d=2, or

.(ii) A~A' = 1, then D has preciselv tt~O intersection
-.~

,numbers: A and A .

Proof (i) By Result 3.1.1(i), if x,y are t~10 distinct

blocks of.!?; then A~lxnyl~2A'-(A'-A)- A=A'. Hence all the

v v
terms of r r (S..-A)(S:.-A') are non-positive, and so

i=1 j~1 1J LJ

j*i

by Theorem 3.1.17, A and A' are the only intersection numbers

of D.

(ii) Since A>A', ~ is regular by Result 1.4.6. Hence, by

Result 3.1.3(ii), if x,y are t~"vo distinct blocks of Q, then:

A' (r-A)/(r2-v>.') .5:. Ixr"'iyl ~)... But r-A>O, r2-vA' >0 and

A' = 1, so r,.;re have

)..' = 1 ~ Ixnyl ~ A. As for (i), by Theorem 3.1.17, ).. and

A' are the only intersection numbers. a
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In this secti~n t.ye examine GD designs T~i th exactly trrl0

intersection numbers. Results obtained are an~l~~ous t~

}-:no~..yn results for quasi-syrJ.1metric 2-designs ; for example

compare Result 2. 5. 3 of Shrikhande and Bhagtvandas ~ r 45] ~

Goethals s.nd Seidel~ [20) and Theorem 2.5.9 with Theorems

3.2.2 and 3.2.5 belot.r.

ti~e also sho~7 that if both Q and Q* are GD, then Q is

strongly divisible, generalising a result of Bose, [131.

To study these designs it is necessary to consider the

regular and semi-regular cases separately. t,7e first suppose

Q is regular:

Lemma 3.2.1 If D is RGD \~ith two intersection numbers-
ll1~il2~ and Ti is an adjacency matrix for

G(!!,}li) ~ then Ti has ej.genvalues : (k-llj )-(rk-bllj») /(llj-lli)

(the valency); (k-ll. )-(r-).)//(lli-lli); ((k-ll. )-(rk-vA' ») /(llj-JJi)
J ~ J

and (k-ll.)/(ll.-ll.) t,rith multiplicities: 1) v-d,d-1 and b-v.
] J 1

Proof By Lemma 1.2.10 (i), T. = ((k-~.)I+~.J-.~TA)/(~ J.-~ 1.). 1 J J

By Lemma 1.2.10(ii) iTi =[ (k-1.Jj)-(rk-bllj))/(~j-lli)Ji,

tvhere A is an incidence matrix for~. ~ is RGD and so
TI ."". '\ '\ I. It . 1 .. t . dAA 2 has eJ.genvalues r-A and rk-VA rv~ th mu 1P ~c~ ~es v-

I ) TAI ..l.. h . 1and d-1; (r-A,rk-vA both non zero. So A 2 as e~genva ues

r-A, rk-vA' and 0 ',lith multiplicities v-d,d-1 and b-v. Using

the expression above for T. in terms of ATA the Lemma follows. U
1

""
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Theorem 3.~.2 If ~ is RGD with two intersection numbers

p,p' (p<p'if arid only if A<A'); then:

(i) ~* is a PBD(2) if and only if b=v;

(ii) If b=v, then ~{~ is GD if and only if p' -= A' ."

In this case B* is GD with the same paramete~s

as~; (i.e. G(~,p) .= r(d,R,), P=A and p' -=A'}.

Proof Let A be an incidence matrix for D.-
(i) ATAli.J has eigenvalues r-A, rk-vA' and 0 with

multiplicities v-d, 0-1 and b-v. All these

eigenvalues are distinct (rk-vA' >O,r-A>O and

rk-vA' *r-A by Result 1.4.1.(ii».

(i) then follows by Lemma 1.4.11.

(ii) Let T and r 'be adjacency matrices for G(~,p)

an(1 G(~,p' ) respectively. By Lemma 3.2.1 T has

eigenvalues 80 = (k-p' )-(k2-vp' »)/(p' ~p);

81 = (k-p' )-(k2_VA' ») /( p' ..:p) and

e2 = (k-p' )-(k-A»)/(p' ..;p) with multiplicities

1, d-1 and v-d; (81>82 since rk-vA' >r-A if and

only if A>A'for an arbitrary GD design-immediate

from Result 1.4.1 (ii».

Also T' 'has eigenvalues eo' = (k-p)-(k2-vp»)/(p-p'),

81' '= (k-p)-(k-A»)/(p-p') and 82'"= (k-p)-(k2_VA' »)/(p-p')

with multiplicities 1,v-d and d-1; (81' >82' "as previously).

By Lemma 1.4.12, ~* is GD if and only 80=e1or 80' =°1'."

But if 80' = 81' ; Q"~ is GD with v-d+1 classes in the group

.,".
',:~
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division (considering the multiplicity of °1' and using Lemma

1.4.12). This cannot occur since 1<dlvand (v-d+1)lb = v.

SO Q~'; is GD if and only if 80=81; i.e. if and only if p' =A' .'

By Lemma 1.4.12, °2= -1 and so A=p. Finally, considering the

multiplicity of 81' we see that the group division of Q* has

d classes. J%

Secondly we consider SRGD designs. We first need:

Lemma 3.2.3 If D is SRGD and D~~ is GD, then D* is SRGD---
with p=k-r+A; also the group divisions form

a strong tactical division of~.

fE££f By Result 3.1.5) p=k-r+A. By Result 1.4.5 every

block contains equally many points of each point class, and

applying Theorem 3.1.13(iii) to ~* we see that the group divisions

form a tactical division of fl which is strong by Result 1.5.2.

Finally R* is SRGD by Theorem 2.4.5. J%

Remark Kageyama in [29], Corollary 2.6, essentially proves

the first part of the above Lemma.

Lemma 3.2.4 If D is SRGD with two intersection numbers-
~1'~2 and Ti is an adjacency matrix for

G(~'~i),then Ti h,~s eigenvalues : (k-~j)-(rk-b~j))/(~j-~i)

(the valency), (k-~j)-(r-A»)/(~j-~i) and (k-~j)/(~j-~i) with

multiplicities 1,v-d and b-v+d-1.

Proof c.f. Lemma 3.2.1. J%
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Theorem 3.2.5 If D is SRGD with two intersection numbers-
p,p' (p<p' ) then:

(i) ~;'( is a PBD(2);

(ii) 12;" is GD if and only if p' = ).' 'JIb. In this case

p=k-r+). and the group division of 12"( has b-v+d

classes.

~f Let A be an incidence matrix for Q.

(i) Immediate from Lemma 1.4.11 since ATAli~ has

eigenvalues r-A and 0 with multiplicities v-d and b-v+d-1.

(ii) Let T be an adjacency matrix for G (~,p). If ~*

is GD then ~* is SRGD by Lemma 3.2.3. But, for any SRGD

design ).<).' '(Result 1.4.6) and so (since p<p') ,Q* is GD if

and only if G (~,p) = r(c,m) for some c and m. Now by

Lemma 3.2.4, T has eigenvalues 60 = (k-p' }-(rk-bp' »/(p""p),

°1 = (k-p' )'/(p' ..:p) and °2 = (k-p' }-Cr-).))/(p' ~p) with

multiplicities 1,b-v+d-1,v-d; (°1>°2)' So, by Lemma 1.4.12,

.£* is GD if and only if °0 = °1' i.e. if and only if p' '= rk/b

=).'v/b Csince rk=v).'}. The rest of the theorem follows

immediately from Lemma 1.4.12. u

Remarks Theorems 3.2.2Ci) and 3.2.5Ci) show that if D-
has two intersection numbers, then a necessary and sufficient

condition for the block graphs to be strongly regular is that

R is symmetric RGD or SRGD. That this is a necessary

condition has previously been established by Shrikhande and

Bhagwandas in [45]. In fact they Rive the more general

result that if ~ is a symmetric or non-regular PBD(2) with two
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intersection numbers then.12* is a PBD(2) with two intersection

numbers then D* is a PBD(2).

To conclude this section we now show:

Theorem 3.2.6 If D* is GD then the group divisions of D--
and ~* form a strong tactical division of Q,

and either :-

(i) D,D* are SRGD; p=k-r+)., p' =).' v/b, B.. = kid and
--J.J

y.. = r/c for every i,j; or
J.J

(ii) b = v; f,~* are RGD with the same parameters and

B.. = y.. for every i,j.
J.J J.J

Proof By Lemma 3.2.3 ~ is SRGD if and only if 2* is SRGD.

In this case (by this Lemma) p=k-r+A, and the group divisions

form a strong tactical division of~. Bij=k/d and Yij=r/c by

Result 1.4.5, p' =).'v/b by Theorem 3.2.5(ii) and we have (i).

If D,D* are RGD, then, by Theorem 3.2.2, D is symmetric---
and Q,~* have the same parameters. Finally Lemma 2.1.7 gives

Bi(jt)= Y(is)j and hence the group divisions form a tactical

division with 0.. = Y.. , which is stron g by Result 1.5.2. ~
PJ.J J.J -.
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3.3 SyJIiIIietricGroup Divisible Designs

The first theorem in this section considerably improves

an earlier result of Bose who essentially showed (iii) * Ci)

of Theorem 3.3.1, which is in itself a special case of Theorem

3.2.6. Theorem 3.3.2 is a result similar in nature to

Theorem 3.2.2 and 3.2.5 in that it studies GD designs with two

intersection numbers, but it shows that a stronger result is

possible in the symmetric case; note the strong resemblance

between this theorem and an earlier result (Theorem 2.5.9) for

quasi-symmetric designs.

Finally two well-known sets of sufficient conditions for

a symmetric GD design to have a GD dual are derived; furthermore

two new results of a similar nature are also given.

Theorem 3.3.1 If D is symmetric, then the following are-
equivalent :-

(i) .!2 admits a strong tactical division with point

classes the classes of the group division of~;

(ii) Q* admits a CLP Division with d classes and P=A;

(iii) D* is GD with the same parameters as D;--

(iv) D"'~ is GD.

Proof (i) * (ii) Immediate from Result 1.5.2.

(ii) ~ (iii) Suppose ~1'... '~d is a CLP Division of Q~~ with

P=A.
Summing the identity of Lemma 2.1.6(ii) over all blocks

".'"
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(iii) ~ (iv) Immediate.

(iv) ~ (i) Immediate by Theorem 3.2.6. a

~emark (iii) ~ (i) of this theorem is due to Bose and

Shrikhande, [is}, for the case lA-).' I' = 1 and to Bose, [13],

for general symmetric GD designs.

Theorem 3.3.2 If D is symmetric with two intersection-
numbers: p, p' .(p>p' 'if and only if ).>A' );

then the following are equivalent :-

(i) ~* is GD with the same parameters as~;

(ii) (v-£)p' '+ (Q,-1)p = k(k-1);

(iii) p = A ;

( i v) p' ~ A' .'

Proof (i) ~ (ii) Immediate from Result 1.4.1 (ii).

(ii) ~(iii) (v-Pv)..' '+ (9.,-1»), = k(k-1).

Hence (v-9.,)(p' .:).') + (R,-1)(p-A) = o.

Suppose A<A' 'and hence p<p'. By Results 3.1.2 and 3.1.3

A5;.P<P' 'and by Corollary 3.1.20 either A=P and A' =p' 'or

P<A' <p' '. So if A*p,P-A and P' ':A' 'are both positive, which

cannot occur since 1<9.,<v. Hence P=A .

A similar argument holds if A>A' " and so we have (iii).

(iii) ~ (iv) Immediate from Theorem 3.1.17.

(iv) ~ (i) Immediate from Theorems 3.2.2(ii) and 3.2.5(ii). a

I",
\I

:' f.).'li81M_.,--- '-""" ,-,~"._""-..~-".". "" ".
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We next obtain two well known results using some of theco

given theory :-

Result 3.3.3(§hrikh~nde and Bhagwandas, [45]) If.!2 is

symmetric and lA-A' t = 1, then.!2* is GD with

the same parameters as~.

f!££f Immediate from Corollary 3.1.18 and Theorem 3.3.2. n

Re~ark In fact Shrikhande and Bhagwandas give the stronger

result that if.!2 is a symmetric PBD(2) with \A2-A11 = 1, then

D~" is a PBD( 2) with the same uarameters as D.-"-

Result 3.3.4 (Connor, [18]) If D is symmetric and regular-
with (r2-vA' ;A-A') = 1, then .:Q* is GD with the

same parameters as~.

~£f Immediate from Corollary 3.1.19 and Theorem 3.3.2. n

Finally we give two new results giving necessary and

sufficient conditions for certain symmetric GD designs to have a

GD dual.

~h~orem 3.3.5 If.:Q is symmetric then either :-

(i) .:Qi' is GD with the same parameters as~; or

(ii) There exist blocks x,x' ;y,y' 'satisfying

I xnx' t < A' '< I yny' t and I xnx' t :j: A :j: I yny' 1".

~£f Immediate from Corollary 3.1.20 and Theorem 3.3.2. n
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Theorem 3.3.6 If ~ is symmetric and either

(i) >.<,,' "and d=2, or

(ii) ,,».' '= 1,

then £~~ is GD with the same parameters as ~.

~£f Immediate from Corollary 3.1.21 and Theorem 3.3.2. ~

""


