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CHAPTER 3 ~ GROUP DIVISIBLE DESIGNS

In this Chapter we consider group divisible designs; in

particular we study the properties of the duals of such designs.

Bose and Connor, [ 14! first introduced the concept of a
GD design. One main reason for introducing these designs was
for work in the design of exneriments; in this context we often
need structures with given parameters. Unfortunately 2-designs
(or B.I.B.D's) with suitable parameters do not always exist, and
GD designs are in some sense the "elosest" to 2-designs.

Connor in [18] studied symmetric GD designs and gave bounds
on the intersection numbers of these designs as well as giving a
sufficient condition for a symmetric GD design to have a GD dual.
Agrawal, [ 2], (among others), gave bounds on the intersection
numbers of all @D designs and Shrikhande and Bhagwandas, Tuys},
derived a further sufficient condition for a symmetric GD design
to have a GD dual.

Apart from this work, it remains an omen question as to which
symmetric GD designs have a GD dual. The only symmetric GD
design known to the author which does not have a GD dual is the
SRGD design to he found in 181, and hence it seems possible that
all symmetric RGD designs have a GD dual.

Symmetric GD designs with a GD dual have been studied by
several authors. In particular, they have been studied in
connection with Baer subdesigns of symmetric 2-designs by Bose
and Shrikhande, [15} and Bose, [13]. The underlying theme of

this Chapter is the study of such GD designs; firstly necessary
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and sufficient conditions are obtained for a GD design to have a
GD dual, and secondly, properties of such designs are examined.

In Section 3.1 general properties of the dual of a GD design
are considered; the known results on bounds on the size of
intersection numbers of GD designs are listed and some new results
of this type are obtained. At the end of this section a result
of Connor's is generalised and some useful corollaries are £
obtained.

GD designs having only two intersection numbers are discussed
in Section 3.2, Necessary and sufficient conditions are given
for such a design to have as its dual a PBN(2), and for such
designs further necessary and sufficient conditions are obtained
for the dual to he group divisible. Lastly the properties of GD
designs with GD duals are investigated.

In Section 3.3 we obtain two sets of necessary and sufficient
conditions for a symmnetric GD design to have a GD dual. Further-
more, two well known results giving sufficient conditions for a
symmetric design to have a @D dual are derived using results
obtained previously, and finally we derive two new results which
give further sufficient conditions of this type.

We assume that D is a GD design throughout, and also that

A'>0; (hence D is connected and r,k>1).
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3.1 Intersection Numbers of Group Divisible Desipns

There are many results giving bounds on the intersection
numbers of GD designs, and we now give a summarv of such results.
Note that some of these bounds have been established for larger
classes of designs, of which GD designs are a special case; in
particular Agrawal, [ 2}, has obtained bounds on the intersection
numbers of all 1-designs in terms of the eigenvalues of AAT
(where A is an incidence matrix of the design in question).

Trivially 0 < |xMy| < k-1 for every pair of distinct blocks
x,y of a design.

Result 3.1.1 (Agrawal, [21) If x,y are two distinct blocks

of D, then :-
(i) TIf A<)' then k-v+X < x| < 2)" v/b - 22(X" -2)/b

- (k=-r+)):

(ii) TIf A>)" then (k-r+}) - 2(A-A") < x| < 2)' v/b

+ LA=1") =~ (k-r+d).
Remarks The bounds of Result 3.1.1 were originally given in
a slightly different form, but the bounds above can easily be
obtained from those of [ 2] by application of Result 1.4.1(ii).
Saraf, { 37) and Shah, [ 38! have obtained similar results, but
Agrawal in [ 2] and [ 3] has shown that the bounds above are in
every case at least as good.
For the symmetric case (i.e. if v=h) we have:

Result 3.1.2 (John, [ 261) If D is a symmetric SRGD design

and x,y are two distinet blocks of D, then :-

A< xy] o< A" -a-1,

| P - B o e ikl B ey sk R
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Remarks John established his upper bound by showing that in
the symmetric SRGD case, the upper bounds of Connor, [ 18] Saraf,
[37) and Agrawal, [ 2], all have integer part 2X'-A-1, and hence
are all equivalent. John went on to show that these bounds are
"best possible" by constructing a family of SRGD designs whose
intersection numbers attain hoth the bounds of Result 3.1.2.

Result 3.1.3 (Connor, {18]) If D is a symmetric RGD design and

X,y are two distinct blocks of D, then :-
(i) If A<x’ then A < |xNy| < A’ (r=2)/(rZvd’);
(ii) If A>A then A (r-A)/(r’-vA') < |xy] <h.
There also exist results similar to those of Majumdar, [32],
(see Result 2.5.1), for certain GD designs.

Result 3.1.4 (Agrawal, [ 21) Suppose x,y are two distinct

blocks of D. If A<A’ and |xW| = k-r+X or if
A>A" and |xNyl = (e=r+d) - 2(A-A") then |x7z| = |yNz] for every
block z (z*x or y).
Another similar result is Result 2.2.7, part of which we
restate here for completeness.

Result 3.1.5 (Saraf, [37]) If D is a SRGD design and x,y are

two distinct blocks of D, then [xNy| = k-r+i
if and only if |x"z] = |yNz] for every block z (x¥x or y).
Agrawal, [ 2] and Neumaier, [33] have obtained further results
of this type for general 1-designs.
We now prove some results similar to those of Connor, [18].
The method of proof employed here is a generalisation of a proof

(due to R.M. Wilson) of analagous results for 2-designs. We first

establish :-




Lemma 3.1.6 Suppose A is a vxb matrix with linearly independent

rOWS. Then :-
(i) P = AT(AAT)-lA is the matrix of the orthogonal
projection of g(b onto the subspace row(A) = U, say;
(ii) Q = I - P is the matrix of the orthogonal nrojection
of ﬁkb onto U™
Proof (i) Suppose x € g(b. Then we may (uniquely) express
X in the form x = x, + x, where x, € U and X, € U*.  Hence
X4 = YA for some y € RV and Agr_zT = 0.

Then xP = (x,+x,)P = x,AT(AAT) 1A + x aTcaa™y s
= ymaTaaah ™+ g A= ga = x,.
(ii) Trivial. x
Lemma 3.1.7 If Q is as in Lemma 3.1.6 and Q4 is any principal

submatrix of Q, then :-
(1) Q4] > 03
(ii) TIf order (Q ) > b-v then [Q ] = 03 (where the order

of Q1 is the size of Ql)'

Proof By Lemma 3.1.8, every vector in U is an eigenvector for
Q of eigenvalue 0, and everv vector in UJ'is an eigenvector for Q
of eigenvalue 1. U has dimension v (since A has linearly
independent rows) and hence UV has dimension b-v. So rank
0 = b-v and Q is positive semi-definite since all its eigenvalues
are non-negative.

(1) 1If Qq is a principal submatrix of Q, then Qq is positive

T

semi-definite since xQux = §fo'T > 0; where x has the

entries of x in the places corresponding to the rows and

columns of Ql’ and zeros elsewhere. So !Qil > 0.
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(ii) rank Q1 < rank Q = b - v, So if Q1 has order greater

than b-v, then lQi! = 0. x
We now use Lemma 3.1.7 to obtain two results of Connor's
on RGD designs. We first require :-

Lemma 3.1.8 If D is a RGD design and A is an incidence matrix

for D associated with the group division, then:-

T.-1 rk{rk=vA’' )I = A" (r-A)J - rk(i-)' )X

(Ap™) = = A CTEIBIESY
vhere K = Id 2] J2 and & indicates the Kronecker Product.
Proof As we ohserved in Section 1.4 above

AAT = M J+O-A")K + (r-A)I. Hence the product of AAT and

the expression on the R.H.S. of the above equation =
[ rk(rk=vA' ) (r=-A)T+\" (pk( (rk=vA’ ) =2 (A-1" ) (vX’ +(r-2)=2(A-)"))
(r=A)) T+rk{A=2" 3 (rk=vA’ )=£ (A=A )= (r-A ) K] /rk(rk-vA’ ) (r-1) = I
(applying Result 1.4.1¢i1)). n
Theorem 3.1.9 and Corollary 3.1.10 below are due to Connor [18].

Theorem 3.1.9 Supposa that D is regular, and that Q = (qij)

is a bxb matrix, with

d
I o Yy i1 . i’ - -%):
Qe =PA (0=2)+(A=2 ){Zisuusww (rk-vA' ) sCu,w)l/{rk=-vA' ) (r-A);

where S uw is as defined in Lemma 2.2.4 and

s(u,w) = kr+d if u = w . If Q1 is any principal

Suw if u * W
submatrix of Q, then :-

(1) |Q1| > 03

(ii) If order (Qq) > b-v then o1 = oO.
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Proof Suppose that A is an incidence matrix for D associated
with the group division of D. Then A is a vxb matrix with linearly
independent rows (by Result 1.4.4) and so, by Lemmas 3.1.6 and

3.1.7 if oH is any principal submatrix of Q = I :>HA>>evsH> then

Q, satisfies conditions (i) and (ii) of the theorem. Hence we

1

need only show that I - >HA>>HV| A has entries q as above.

uw
By Lemma 3.1.8, AT(AAT) 1A =

[ rkCrk=vA’ DATA-A" (o2 )ATTA-rk (A -2" YATKA] /rk(rk-vA’ ) (r=1) .
By Result 1.2.2(ii), >HQ> = rkJ, and, employing the notation

of Lemma 2.1.4,
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i=1

T, T\ 1
meWmvomH|>n>>v>3mmmﬁd3%

a .,
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(rk-v) Y (r=-2)

in its uth row and wtl column. The theorem then follows. u
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Corollary 3.1.10 If D is symmetric and regular then :-

. d i3y2 _ 2 ’ '
(1) ] (s3,)° = (2w + oo
i=1

d
i 2/' i i— ! --' 2— !
(i1) s ="+ (izisuusww 2N} A-2" )/ (r%-vA" ) for every

u,w (1<u,w<b).
Proof (i) Let Q1 be any principal submatrix of Q of order
one, i.e. Q_1 has as its single entry :

d . 2
LA (r=2 )+ (=)' )i}-:l(stu = (2N /(2% -A! ) ().

By Theorem 3.1.8(ii) this entry must be zero, and (i) follows
after applying Result 1.4.1(ii).

(ii) Let Qq be any principal submatrix of Q of order two.
By (i) above, Q1 has diagonal entries Zero, and its off diagonal

entries are both

d
’ - 1! 3 i - 2_ LN 2_ 4 -
EAT (=2 )+ (A= )izisﬁusww (r®=vd")s /(% =v2" ) (p-2).

Again, using Theorem 3.1.9(ii), these entries must be zero, and

(using Result 1.4.1(¢ii)) (ii) follows. u

More generally we have :-

Corollary 3.1.11 If D is regular then :-

d . :
E (Sau)z > (rk=vA') + 22" - (r~k) (rk=vA’ Y/ (A=2" ).
i=1
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Proof Let oH be any principal submatrix of O of order one.

_OH_ > 0 by Theorem 3.1.9(i) and since (rk~vA' ) (r-2) > 0

the Corollary follows (after applying Result 1.4.1(ii)). A

Remark Using Corollary 3.1.10 we may also derive Result 3.1.3.
i i 2 g d i1
Clearly M mm u S u pm m v * M Amzz - prmccmzz

, using Corollary 3.1.10(i).

d
- 2_ 4t ’
= 2((e®-va" )+2r - m S

o

M». ~ ‘ m, .
Hence M :c za < (pf~v)’) +23" .  Also 0 < s;  for every 1,

a.
mbmmoOA M mHmHAA%mu<y.v+p».. wmmcwdw.p.wmowHozm
s2q UUTWW =
after applying Corollary 3.1.10(ii).

We now obtain some new results on intersection numbers of
@D designs, similar in nature to Results 3.1.1 - 3.1.5 above.

We first require :

Lemma 3.1.12 Using the notation of Lemma 2.2.4 :
M (s=5,0)° = (A=A") Mﬁmw sk 1%4als ~(keran)) (kms. )
= S uw S Paw’ T
ﬁ*c
++uw
Proof Immediate from Lemma 2.2.5. !

We now have :

Theorem 3.1.13 If x,y are two distinct blocks of D, then :-

(i) If A<\ then k-r+d < |x"y| with equality if and only
if |xNz| = |y"z| for every block z(z#x or y) and

| x"P4 b= |y lu_ for every point class P. (1gi<d);
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(ii) If a>x' and |x"z| = |y"z| for every block z, then
| x3y] < k-r+x;

(iii) Any two of the following imply the third

(a) |x"y] = k-r+r;

(b) |xy| = |yNz| for every block z (ztx or y) ;

() [|x7P;| = |y"B;| for every class P, (1<icd).
Proof The Theorem follows immediately from Lemma 3.1.12
since k—suw > 0. n

Remarks (i) gives the lower bound of Result 3.1.1(i) and a
stronger result than Result 3.1.4(i). If D is SRGD then
A<)' and lxﬂgil = ]yﬁgi] for every x,y and P.: so in this
case (i) ahove just becomes RPesult 2.2.7.

Theorem 3.1.1Y4 If D is a symmetric RGD design and x,y are

two distinct blocks of D, then :-
(i) If A<A’ then A <Ixy] < A+2 (X M)
(ii) If M2 then A-2(A-A") < [xy| < A

(iii) |xNz| = |yNz| for every block z (zfx or y) if and

only if |[xNy| = A-2(x=2") or |x7y| = 1.

Proof Set x = x , y=x. In the symmetric case Lemma
u W

3.1.12 gives :~

-5 )2

(s wt

d . . 2
= (l-l')izi(sl-sl ) o+ 2(s - (r-s ).

ut uu ww

+ H ur~-1g

1
u
o

+ ot ot

Using Corollary 3.1.10 we also have

1 1,2 2 ' '
121(8355;W) = 2(AM(r-2)+(A=1" )22 =(2-vd")s )/ (A=A
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Substituting in the above and manipulating we obtain :

b 2
- = - ‘Y - ~3' ) -
deAmCﬁ St = 205, N ((A-2O0-\" N -5 ).
t¥u,w
The theorem then follows. "
Remarks The lower bounds of (i),(ii) are the same as the

lower bounds of Result 3.1.1(i),(ii); also, the lower bound
of (i) and the upper bound of (ii) are the same as the bounds
of Result 3.1.3(i),(ii).

We now consider certain 6D designs whose duals are
divisible, and then obtain some further results on the
intersection numbers of such designs. Bounds are obtained
which are analagous to those obtained by Beker and Haemers, [ 7],
for decompositions of 2-designs; (see also section 2.5 above).
As we shall see helow, GD designs whose duals are also GD are in
fact strongly divisible, and in the regular case they are
symmetric.

Lemma 3.1.15 Suppose that B,,...,B  is a CLP Division of

D* with p = k~r+A and Buua for every j. Then,

for every i,j (1<i<d,1<j<c) there exists a constant B,., such

e
ide

that every block of B. is incident with mw points of mwm and

=3

Lode

c d
2
m m (p s =03 uAyny.VMMpAmwa;mwsv +N9~acznax;d+va
$

AAH'VV\B+AW1%+yV|o for every u,w (ufw).

sﬁgv
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Proof mw@ exists for every i,j by Theorem 3.1.13(iii).

By Lemma 2.1.5 :

i=1

-

awMchm y

T e

d
M B, B, +A m mwm +Asuyv.m wwc ~(x2-
+

Ldelde

+A m B,2 +(r~A)k aAw Vg and

v § fe, s,
iz1 j=1 T IN 4eq W
3+
m .o, = A m . B. #\ ) B, B, -\ -2 (k-
uMHoucuuﬂ 121 prch jw® MMH.McmH£+A% ) M macmvazmv 2(k nvo
3*1
z . B, 42 . B, - -
y.pr uMpmwc st »MHmpcmp +H(r-2)p  ~2(k-PIP .
J¢i
Hence m M (0, -p. Y2=(a-2") m ®, -8, )242(p-2)(p_ ~(k-p+1))
oLs ju 3w’ . iu iw uw
3=1 i=1
(using the fact that pzk-r+X and m mu: = k).
=1
2 ' 2
i =(A-A -f
So, finally, uM o.zv ( VMMHAwwc mwzv +
u#
maﬁbcgaawld+vaﬁﬁalyv\B+AW|ﬁ+»vcoc£U. n

We now have :

uw

If D satisfies the conditions of Lemma 3.1.15

Theorem 3.1.16 D
are two distinet classes of the

and if m: u.mz

CLP Division of D*, then
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(i) If AA then k-r#h <0< (p-A)/m + (k-r+}) with

equality in either one of the inequalities if and

only if ocu P for every j (j¥u or w) and Biu “Biw

for every i;

(ii) If A>)' and vcu = osu for every j (j*%u or w), then

Py S k-r+d or p > (r=-A)/m + (k-r+d);

(iii) Any two of the following imply the third :-

(a) Puw = k~r+A or Puw = (r=2)/m + (k-r+));
() ocu = P for every j (j*u or w);
(c) mwc =z mwz for every i.

Proof Immediate from Theorem 3.1.14% and Lemma 3.1.15. =&

We next give a generalisation of a result of Connor, [181,
on RGD designs.

Theorem 3.1.17 If D is a symmetric GD design, then (with

the notation of Lemma 2.2.4) :

v v )
wmp uwphmwu‘»VAm»u,y ) = 0.
Proof Consider the trivial P Division of D* and apply

Lemma 2.1.6(ii),(iii) to obtain :

P
Se. = vk (k~1)
i=1 =1 3
j¥i
= v(2=1DA + v(v-2))" (by Result 1.4.1(ii)),
v X ' 2 2
and ] ] sf. = v(v-D) 7 4 v(2-DAC.
i=1 =1 13
I*i
yOy ( A ¢ Ay =0
o™ . = . jad
Then Mmp wmp mHu mwu
I#i




The following two corollaries lead to two well known
results on symmetric GD designs; (see Section 3.3. below).

Corollary 3.1.18 If D is a symmetric GD design and

[A=A"] = 1, then D has precisely two
intersection numbers : A and A'.
Proof Since A,)' are consecutive integers every term on
the L.H.S. of the equation of Theorem 3.1.17 must be non-
negative, and so D has at most two intersection numbers:
A and ). But both these values must occur or else D* is
a symmetric 2~-design, and hence D is a 2-design. H

Corollary 3.1.18 If D is a symmetric RGD design and

(rz—vx',l-l') 1, then D has precisely

two intersection numbers : A and A'.

Proof By Corollary 3.1.10(ii), s =2 +alA=2" )/ (p2-v2")
where a € Z. Since (rz-vl',k-k‘) = 1, a/trl-vA') € 2 and so
Suw * A +b(A-A"); hE 7. So S uw cannot lie between A and

A' and so, as in the previous corollary (sij-h)(siﬁ—l') >0

for every 1,7. The result follows immediately as in
Corollary 3.1.18. H
Finally, we also have two further corollaries

Corollary 3.1.20 If D is a symmetric GD design then either :-

(i) D has precisely two intersection numbers : A and ' ;

or (ii) There exist blocks x,x ,v,y satisfying :

' | < A" < Jvw' | and |x%' | ¥ a# |yY .
Proof Suppose A<A' .  Then, if |xW| < X' for every pair of
— v v
blocks x,y, all the terms of | ] (s..-A)(s..-1") are non-
j=1 3=1 I 13
j#i
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rositive (by Result 3.1.1(ii)), and so A,)’ are the only
intersection numbers. If this is not the case then there

exist blocks y,y' with A<)' <ly"w' |, and hence the sum above

has a positive term. So, by Theorem 3.1.17 and Result 3.1.1(ii)

there exist blocks x,x with A<|xx' |<)\'.
A similar argument holds if A>A', and the Corollary
follows. "

Corollary 3.1.21 Suppose D is symmetric. Then if

(i) x<)A' and d=2, or
(ii) A=)’ = 1, then D has precisely two intersection
numbers : A and A’'.
Proof (i) By Result 3.1.1(i), if x,y are two distinct

blocks of D then A<ixOy]<2A' ~(A"-A)=~ A=1". Hence all the

v v

terms of ] ]} (sijwl)(sij-k') are non-positive, and so
i=1 j=1
I#1i

by Theorem 3.1.17, A and A' are the only intersection numbers
of D.

(ii) Since X>A2'g is regular by Result 1.4.6. Hence, by
Result 3.1.3(ii), if x,y are two distinct blocks of D, then:

2_y\' >0 and

A (=27 (p2=vA') < |xw| < A.  But p-A>0, r
A'=1, so we have
A= 1 < x| < x. As for (i), by Theorem 3.1.17, X and

A' are the only intersection numbers. X
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3.2 Group Divisible Desisns with Two Intersection Numbers

In this section we examine GD designs with exactlv two
intersection numbers. Results obtained are analasnus to
nown results for quasi-symmetric 2-designs ; for example
compare Result 2.5.3 of Shrikhande and Bhagwandas, [45],
Goethals and Seidel, [ 20] and Theorem 2.5.9 with Theorems
3.2.2 and 3.2.5 below.

We also show that if both D and D* are GD, then D is
strongly divisible, generalising a result of Bose, [131.

To study these designs it is necessary to consider the
regular and semi~regular cases separately. We first suppose
D is regular :

Lemma 3.2.1 If D is RGD with two intersection numbers

PRI and Ti is an adjacency matrix for
G(B,u,), then T; has eigenvalues :[(k*uj)-(rk-buj))/(uj-ui)
(the valency); ((k-uj)-(rwkﬁl(uj-ui); ((k—uj)-(fk-vl'))/(uj-ui)
and (k-uj)/(uj-ui) with multiplicities : 1, v-d,d-1 and b-v.
Proof By Lemma 1.2.10 (i), T, = ((k—uj)Iﬂij—ATA)/(uj-ui)-
By Lemma 1.2.10(ii) 3T, =[ ((k-uj)-(rk-buj))/(uj—ui)]j_,

where A is an incidence matrix for D. D is RGD and so

AATIiL has eigenvalues r-A and rk-vA' with multiplicities v-d
and d-1; (r-l,rk~vl'both non zero). So ATAIiJ' has eigenvalues
r-A, rk-vA' and 0 ﬁith multiplicities v-d,d~1 and b-v. Using

the expression above for Ti in terms of ATA the Lemma follows. ®
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Theorem 3.2.2 If D is RGD with two intersection numbers

p,p' (p<p’ if and only if A<A’'); then

(i) D* is a PBD(2) if and only if b=v;

(i1) If b=v, then D* is GD if and only if p' = A\’ .
In this case D* is GD with the same parameters
as D; (i.e. G(B,p) 2 I'(d,L), p=X and p' =A").

Proof Let A be an incidence matrix for D.

(i) Afal3+

has eigenvalues r-iA, rk~-v)' and 0 with
multiplicities v-d, d-1 and b-v. All these
eigenvalues are distinct (rk-vA’' 30,r-2>0 and
rk=vA’ #r-1 by Result 1.4.,1.(ii)).

(i) then follows by Lemma 1.4.11.

(ii) Let T and T ‘be adjacency matrices for G(B,p)
and G(B,p' ) respectively. By Lemma 3.2.1 T has

eigenvalues 8, = ((k~p')-(kz-vp')]/(p"p);

= ((k=p' )= (k2-vx" )) /(o' =p) and

= ((k-p' ¥-(k-1))/(p' -p) with multiplicities

1, d-1 and v-dj; (61>62 since rk-v)' sr-)1 if and
only if A>)’ ‘for an arbitrary GD design-immediate

from Result 1.4.1 (ii)).

Also T ‘has eigenvalues 8, = ((k—p)-(kz-Vp))/(p-p'),

8, = ((k=p)=(k-2))/(p=p' ) and 8, ‘= ((k-p)=(k2-va" ¥} /Cp=p' )

1

with multiplicities 1,v-d and d-1; (61'>62"as previcusly).

By Lemma 1.4.12, D* is GD if and only 6,26, or 6, =0,".

But if 60'= 61'; D* is GD with v-d+1 classes in the group

I e
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division (considering the multiplicity of 61"and using Lemma

1.4.12). This cannot occur since 1<d|v and (v-d+1)|b = v.

’

So D* is GD if and only if 64=6,; i.e. if and only if o' =A" .

0
By Lemma 1.4.12, 0y= -1 and so A=p. Finally, considering the

multiplicity of 6,, we see that the group division of D¥ has

d classes, H

Secondly we consider SRGD designs. We first need :

Lemma 3.2.3 If D is SRGD and D* is GD, then D* is SRGD

with p=k-r+d; also the group divisions form

a strong tactical division of D.

Proof By Result 3.1.5, p=k-r+A. By Result 1.4.5 every
block contains equally many points of each point class, and
applying Theorem 3.1.13(iii) to D* we see that the group divisions

form a tactical division of D which is strong by Result 1.5.2.

Finally D* is SRGD by Theorem 2.4.5. 1
Remark Kageyama in [29], Corollary 2.6, essentially proves

the first part of the above Lemma.

Lemma 3.2.4 If D is SRGD with two intersection numbers

HqslHy and Ti is an adjacency matrix for

G(B,u;),then T; has eigenvalues : [(k-uj)—(rk-buj)]/(uj-ui)
(the valency), ((k-uj)—(r-x))/(uj—ui) and (k-uj)/(uj—ui) with

multiplicities 1,v-d and b-v+d-1.

Proof c¢.f. Lemma 3.2.1. H
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Theorem 3.2.5 - If D is SRGD with two intersection numbers

ps0’ Cp<p' ¥ then :
(1) D* is a PBD(2);
(ii) D* is GD if and only if ' = )\ v/b. In this case

p=k-r+} and the group division of D% has b-v+d

classes.

Proof Let A be an incidence matrix for D.

(i) Immediate from Lemma 1.4.11 since ATA iJ' has

eigenvalues r-A and 0 with multiplicities v-d and b-v+d-1.

(ii) Let T be an adjacency matrix for G (B,p). If D*
is GD then D* is SRGD by Lemma 3.2.3. But, for any SRGD
design A<A’ ‘(Result 1.4.6) and so (since p<p' Y D* is GD if
and only if G (B,p) 2 T'(c,m) for some ¢ and m. Now by

Lemma 3.2.4, T has eigenvalues 8, = {(k-p' y-(rk-bp'}}/(p' ~p),
0y = (k=p' ¥/(p' =p) and 6y = (C(k=¢" ¥=Cr=-2))/(p" =p) with

multiplicities 1,b-v+d-1,v-d; (01>02). So, by Lemma 1.4.12,

D* is GD if and only if 6 i.e. if and only if p rk/b

0o = 9>
=A"v/b (since rk=vA' ). The rest of the theorem follows

immediately from Lemma 1.4.12. n

Remarks Theorems 3.2.2(i) and 3.2.5(i) show that if D
has two intersection numbers, then a necessary and sufficient
condition for the block graphs to be strongly regular is that
D is symmetric RGD or SRGD. That this is a necessary
condition has previously been established by Shrikhande and
Bhagwandas in [u45]. In fact they give the more general

result that if D is a symmetric or non-regular PBD(2) with two
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intersection numbers then D% is a PBD(2) with two intersection

numbers then D* is a PBD(2).

To conclude this section we now show :

Theorem 3.2.6 If D* is GD then the group divisions of D

and D* form a strong tactical division of D,

and either :-
(1) D,D* are SRGD; p=k-r+i, p =1’ v/b, Bj4 = k/d and

Yij = r/c for every i,j; or

(ii) b = v; D,D* are RGD with the same parameters and

Bij = Yij for every 1i,].
Proof By Lemma 3.2.3 D is SRGD if and only if D* is SRGD.

In this case (by this Lemma) p=k-r+X, and the group divisions

form a strong tactical division of 2; Bij=k/d and yij=r/c by
Result 1.4.5, p' A" v/b by Theorem 3.2.5(ii) and we have (i).

If 2,2* are RGD, then, by Theorem 3.2.2, D is symmetric
and D,D* have the same parameters. Finally Lemma 2.1.7 gives
Bi(jt)= Y(is)j and hence the group divisions form a tactical

.y which is strong by Result 1.5.2. n

division with Bij = Yi]
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3.3 Symmetric Group Divisible Designs

The first theorem in this section considerably improves
an earlier result of Bose who essentially showed (iii) = (i)
of Theorem 3.3.1, which is in itself a special case of Theorem
3.2.6. Theorem 3.3.2 is a result similar in nature to
Theorem 3.2.2 and 3.2.5 in that it studies GD designs with two
intersection numbers, but it shows that a stronger result is
possible in the symmetric case; note the strong resemblance
between this theorem and an earlier result (Theorem 2.5.9) for

quasi-symmetric designs.

Finally two well-known sets of sufficient conditions for

a symmetric GD design to have a GD dual are derived; furthermore

two new results of a similar nature are also given.

Theorem 3.3.1 If D is symmetric, then the following are

equivalent :-
(i) D admits a strong tactical division with point

classes the classes of the group division of D3
(ii) D* admits a CLP Division with d classes and p=);
(iii) D* is GD with the same parameters as Dj
(iv) D* is GD.
Proof (1) = (ii) Immediate from Result 1.5.2.

(ii) = (iii) Suppose gl,...,gd is a CLP Division of D* with
p=A.

Summing the identity of Lemma 2.1.6(ii) over all blocks
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of D we obtain :

= vk(k~-1)+v)~) BM

1

nes10,

1

He~1 0
H 10
=
He
=
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= vaarv?) Svaa’ a ] mZ (by Result 1.4.1(ii)).
i=1

Also, by Lemma 2.1.6(iii), we have
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(iii) = (iv) Immediate.

(iv) = (i) Immediate by Theorem 3.2.6. H
Remark (iii) = (i) of this theorem is due to Bose and
Shrikhande, [15], for the case |A-A"| = 1 and to Bose, [13],

for general symmetric GD designs.

Theorem 3.3.2 If D is symmetric with two intersection

numbers : p,p ‘(p>p’ ‘if and only if A>)\ ¥;

then the following are equivalent :-
(i) D* is GD with the same parameters as Dj
(iiy (v=-D)p" "+ (2=1)p = k(k-1);
(iii) o = X 3

(iv) o' = A" .

Proof (i) = (i1) Immediate from Result 1.4.1 (ii).

(ii) = (iii) By Result 1.4%.1 (ii) : (v-2A" "+ (g-1)A = k(k-1).
Hence (v-2)(g'=2" ) + (2-1)(p-2) = 0.
Suppose A<\ ‘and hence p<p’. By Results 3.1.2 and 3.1.3
A§p<p"and by Corollary 3.1.20 either A=p and A'=p"or
p<A’ <o’ . Sc if A¥p,p-) and p' =1 ‘are both positive, which
cannot occur since 1<g<v. Hence p=2A

A similar argument holds if A>)', and sc we have (iii).

(iii) = (iv) Immediate from Theorem 3.1.17.

(iv) = (1) Immediate from Theorems 3.2.2(ii) and 3.2.5(ii). ®
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We next obtain two well known results using some of the
given theory :-

Result 3.3.3 (Shrikhande and Bhagwandas, [u45]) If D is

symmetric and |A-A"} = 1, then D* is GD with

the same parameters as D.

Proof Immediate from Corollary 3.1.18 and Theorem 3.3.2. "

Remark In fact Shrikhande and Bhagwandas give the stronger

result that if D is a symmetric PBD(2) with !AZ-All = 1, then

D* is a PBD(2) with the same parameters as D.

Result 3.3.4 (Connor, [18]) If D is symmetric and regular

with (p2~-vA' ;A=A ) = 1, then D* is GD with the

same parameters as D.

Proof Immediate from Corollary 3.1.19 and Theorem 3.3.2. n

Finally we give two new results giving necessary and
sufficient conditions for certain symmetric GD designs to have a

GD dual.

Theorem 3.3.5 If D is symmetric then either :-

(i) D* is GD with the same parameters as D; or
(ii) There exist blocks x,x ,y,y ‘satisfying

' | < A < |yy' | and x| ¥ A # lyy' |

Proof Immediate from Corollary 3.1.20 and Theorem 3.3.2. o
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Theorem 3.3.6 If D is symmetric and either

(i) a<)' -and d=2, or

(ii) A o= 1,

then D* is GD with the same parameters as D.

Proof Immediate from Corollary 3.1.21 and Theorem 3.3.2. #




