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Abstract 

The term personal PKI was devised within the SHAMAN project to describe a public 
key infrastructure specifically designed to support the distribution of public keys in a 
Personal Area Network.  In this paper a variety of issues relating to the operation and 
management of a personal PKI are discussed.  Following a general discussion of 
requirements for personal PKIs, the main topics covered are: the operation of personal 
CAs, device initialisation, proof of possession, and revocation. 

1. Introduction 
This paper is concerned with methods for the deployment of Public Key Infrastructure 
(PKI) techniques to support secure communications between devices in a Personal 
Area Network (PAN).  One major issue dealt with in this paper is the development of 
methods for two PAN components to securely exchange their public keys, as required 
to support the pairing of “second party components” (as defined in the PAN reference 
model within Annex 2 of [8]).  It is assumed that the two devices cannot rely on either 
existing symmetric shared keys or connection to a global PKI that both devices trust. 

The term ‘Personal PKI’ is used throughout for a PKI deployed to support 
communications in a PAN.  The idea is that by deploying a PKI in such a limited 
environment, many of the problems associated with PKI deployment in a much larger 
and less well -defined environment can be avoided, whilst the advantages of use of a 
PKI can be retained.  The PAN is assumed to contain at least one device acting as a 
‘Personal Certification Authority (Personal CA)’ , which is responsible for generating 
public key certificates for all devices within the PAN. 

Sections 2 and 3 of this paper contain a discussion of requirements and issues.  
Section 4 provides a detailed discussion of the Personal CA and the corresponding 
issues.  In section 5 a protocol for device initialisation is introduced and analysed.  
Proof of possession as a means of assuring the certifier of the possession of the 
private key related to the public key to be certified is discussed in section 6, and 
section 7 lists requirements and ideas about revocation in PAN-environments.  
Finally, conclusions and issues for further research are provided in section 8. 

2. Issues in the personal PKI 
We start by listing the various aspects of public key management for which solutions 
need to be found.  More detailed discussions of the issues will be provided below. 
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• Certificate and key pair update.  The public key certificates issued by the Personal 
CA will (almost certainly) have a specified expiry date.  Once this date is reached 
the mobile device will need to be equipped with a new certificate.  This certificate 
may be issued for the same key pair or for a new key pair. 

• Key status management.  At any time a mobile device’s private key (or the mobile 
device itself) may be compromised or stolen.  In such an event, all entities within 
the PAN wil l need to be informed that the public key certificate(s) assigned to this 
device should be revoked (i.e. no longer considered valid).  In a similar way, the 
Personal CA may itself be compromised or stolen, in which case the Personal CA 
root key needs to be revoked.  Information on which keys have been revoked wil l 
need to be distributed to mobile devices in a timely and eff icient way. 

• Trust management.  The relationship between the mobile device and the personal 
CA will need to be managed, including CA (root) key update and the possible 
replacement of personal CA devices, especially in the event of lost or stolen 
personal CA devices. 

2.1 Certificate and key pair update 
If the mobile device merely wishes to obtain a new certificate for an existing public 
key then, because of the scale of the personal PKI, a simple solution is possible.  
Given that the total number of personal devices will be small , it is likely to be 
possible for the personal CA to securely retain a copy of all public keys for which it 
has generated certificates.  It could even routinely check the certificates to see if any 
of them have expired.  Once the need for a new certificate has been determined, the 
personal CA device simply asks the user if the certificate for an existing key pair 
should be renewed.  Once the user has agreed, a new certificate can be generated and 
passed to the device concerned across the wireless interface at the next opportunity. 

Even if storing all public keys at the personal CA is not feasible, in certain cases it 
may be possible to use a relatively simpli fied certificate renewal process.  The mobile 
device requiring a new certificate could pass the expired certificate to the personal CA 
which would then pass the relevant information, i.e. details of the device and the 
public key, to the user for a decision regarding whether or not the certificate should be 
renewed.  If the user agrees a new certificate can be generated. 

If a new key pair is to be assigned to the mobile device, then the renewal process 
becomes more diff icult.  In some cases it may be possible to use the old key pair to 
establish a secure exchange between personal CA and mobile device – however, if the 
key pair is still t rusted and the parameters of the keys are still considered suff icient to 
secure this process, then it is not clear why it would need to be changed.  Indeed, the 
default for many inexpensive mobile devices may simply be to use the same key pair 
indefinitely. 

However, if a new key pair is definitely required, and if the old key pair cannot be 
used to secure the necessary interactions between personal CA and mobile device, 
then a new imprinting process will probably be necessary.  However, given that this 
will i nvolve relatively few user keystrokes, and given also that this wil l probably be a 
rare event, this should not present a huge practical problem for the user. 
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2.2 Key status management 
We consider two different ways in which certificate status information can be 
disseminated to mobile devices.  The choice between the two approaches depends on 
the online availabili ty of the personal CA. 

The first approach we call online status dissemination.  This is designed for use in the 
case where the personal CA is available online to every mobile device either 
permanently or at least at frequent intervals.  In the case where the personal CA is 
permanently online, then an online status query protocol could be used, e.g. a protocol 
along the lines of the Online Certificate Status Protocol (OCSP).  However, because 
of the small scale and relatively closed nature of the personal PKI it may be possible 
to use a simpli fied version of OCSP. 

In the case where the personal CA is not always online, but is nevertheless online at 
frequent regular intervals, the use of routinely distributed Certificate Revocation Lists 
(CRLs) – see, for example, X.509 – would appear to be appropriate.  In this approach 
the personal CA generates new CRLs at regular intervals and distributes them 
automatically to all mobile devices.  Whilst the personal CA is not online 
permanently, and neither are all mobile devices, this approach will be appropriate in 
cases where the personal CA is online suff iciently often that the chances of every 
mobile device having the latest CRL is very high. 

Another approach is  ad hoc status dissemination.  This is designed for use when the 
personal CA may only be online intermittently or rarely.  In such a case, a mobile 
device may not be online at the same time as the personal CA very often, in which 
case directly distributed CRLs no longer appear appropriate.  Thus an alternative 
means for distributing CRLs appears to be necessary. 

As in the previous case we assume that the personal CA generates CRLs at regular 
intervals.  We now suppose that the personal CA is online suff iciently often that it can 
distribute the latest CRL to at least one mobile device (if not then there is clearly no 
way of distributing timely status information).  Subsequent distribution of CRLs is 
then assumed to occur in an ad hoc fashion between mobile devices.  A more detailed 
discussion of theses issues can be found in section 7. 

2.3 Trust management 
We first consider the routine updating of root keys, i.e. when an existing personal CA 
wishes to update its key pair.  If the old root public key has not been revoked, then 
this could be achieved by distributing a certificate for the new root public key signed 
using the old CA private key.  Whilst this approach has dangers, it may be suff iciently 
secure for use in a PAN environment.  The only alternative would appear to be to 
engage in a new imprinting process with all mobile devices, which could be a rather 
onerous process for the user. 

The case of a compromised or stolen personal CA is rather more diff icult.  In such a 
case there is a need to inform all mobile devices of this in a timely way.  Of course, 
once the root key has been revoked, then secure communications between devices 
will become impossible unless another root key (and a certificate signed using this 
key) is available.  There would appear to be two main approaches to dealing with this 
issue. 
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The first approach is to use multiple personal CAs.  In this case every device wil l 
have multiple root keys and multiple certificates for their public key(s).  If two or 
more Personal CAs are available at the time a mobile device is imprinted, then it 
should be possible to devise a special version of the imprinting protocol given in 
Section 5.1.1 to enable simultaneous registration and certificate generation.  When 
one CA root public key is to be revoked, then the mobile devices can be informed by 
the remaining personal CAs, using the same mechanism as is used to disseminate 
revocation information for other mobile devices. 

The second approach is to re-imprint every device with a replacement personal CA as 
soon as possible after the loss of the old personal CA.  Such a process can be designed 
to simultaneously revoke the old CA and register with the new CA.  An appropriately 
modified version of the imprinting protocol described in Section 5.1.1 above will need 
to be used. 

3. Personal PKI requirements 
The underlying requirement is for two devices, which do not share any pre-existing 
symmetric keys or root certificates, to be able to securely exchange public keys which 
each device can verify.  In this section we identify the requirements that arise when a 
‘conventional’ PKI solution is followed, albeit adapted to a PAN environment.  In 
such a case, one of the devices within the PAN is defined as the “personal CA” and is 
responsible for issuing public key certificates to other devices. 

The following functional requirements therefore result (many are taken from Annex 2 
of [8]): 

a. the personal CA key pair can be securely generated within the device, or 
securely generated and transferred to the device at manufacture, and (in both 
cases) the private key is securely stored when on the device; 

b. the root public key of the personal CA can be securely transferred to those 
devices that will have to verify certificates issued by the personal CA; 

c. the personal CA can generate public key certificates for mobile devices (and in 
such a way that the security of the personal CA private key is not endangered); 

d. mobile devices can verify certificates issued by the personal CA, and can 
check certificate validity and revocation status where appropriate. 

The general security requirements applying to methods used in the personal PKI are: 

e. no third party passive interceptor of communications can learn any secret 
information; 

f. no third party active interceptor of communications can manipulate the 
exchanges between mobile device and personal CA so that a public key 
certificate is created for the incorrect device or that contains incorrect data 
(e.g. a public key other than that created by the mobile device); 

g. For securing the transfer of the personal CA root certificate from the personal 
CA device to another mobile device, the interaction between a mobile device 
and personal CA shall use at least a ‘weak’ shared secret, e.g. a shared 
password or PIN, and the method of this use should be capable of resisting 
‘brute force’ attacks on the shared secret; that is, one of the secure passkey 
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protected mechanisms listed in Annex 2 of [8], or a method of equivalent 
strength, should be used. 

Additional and optional functional requirements are: 

h. the security-critical personal CA functionality (including key generation and 
storage functions) should preferably be removable, personal and transferable; 

i. the security-critical personal CA functionality can be directly verified and 
readily enabled/disabled from a single gateway and/or master user. 

4. Personal CAs 

4.1 Operation of a personal CA 
In this section we describe the operational processes of a personal CA. 

4.1.1 CA initialisation 

Before use, the personal CA must be initialised.  This involves generating a signature 
key pair for the personal CA.  The personal CA will therefore need to incorporate 
means for generating sufficient random material to enable it to securely generate a 
signature key pair. 

The requirements for the personal CA functionality listed in Section 3 point towards 
the use of a smart card or other portable tamper-resistant device.  Particular 
advantages could be obtained by combining this device with a device already used for 
global network access, e.g. a GSM/UMTS SIM/USIM device. 

4.1.2 Device initialisation 

This will require a mobile device to perform the following steps – not necessarily in 
the order specified.  (Note that some of these steps may be combined). 

• The mobile device will generate any necessary key pairs (signature keys, 
encryption keys, etc.). 

• At some point in this process the mobile device must import authentication 
material from its owner.  As discussed below, for a variety of reasons this should 
require the minimum number of keystrokes by the user, i.e. it should be a ‘weak’ 
passkey. 

• The mobile device will be informed of which other device is the personal CA, or 
will have to ‘discover’ this device across the PAN.  

• The personal CA root public key will be passed to the mobile device.  This must 
be done in such a way that the mobile device can verify the integrity and origin of 
the CA public key. 

• The mobile device will provide its public key(s) to the personal CA.  This must be 
done in such a way that the personal CA can verify the integrity and origin of the 
public key(s) before it generates any public key certificates. 

• The personal CA will generate a public key certificate for the mobile device. 

• The newly created public key certificate will be passed to the mobile device.  (The 
mobile device can verify the certificate using the CA root public key). 
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4.1.3 Candidate mechanisms for password-based initialisation 

There exists a considerable literature on protocols designed to enable two entities who 
share a password (a ‘weak key’) to use it to authenticate one another and (possibly) 
establish a shared secret key.  A number of protocols of this type are known that are 
resistant to off-line searching attacks for the weak key, even if the attacker 
participates in the authentication protocol. A short discussion of such schemes can be 
found in [8]. 

What is required here is slightly different, in that we wish to have a means for two 
entities to exchange public keys in an authenticated way, based on a weak (short) 
shared secret.  Of course, one approach would be to first establish a shared secret key 
(as above) and then use this to establish an authenticated channel.  However, other 
possibilities, if they exist, would also be of interest.  In fact, the use of passwords for 
the PKI registration process is an issue of much more general application than for 
Personal Area Networks. 

A possible candidate mechanism for password-based initialisation is discussed in 
Section 5.1 below. 

4.1.4 Public key status management 

Once a mobile device has performed the exchange of public keys with the personal 
CA, the issue remains of managing the status of public keys, and disseminating public 
key status information.  Specifically, if a public key is compromised, or suspicion of a 
possible compromise arises, how is this information disseminated to parties within the 
PAN?  Solutions devised for conventional PKI-scenarios, e.g. OCSP, may not be 
appropriate within the PAN environment. Therefore a discussion on revocation in 
PANs is provided (see section 7). 

4.2 Multiple personal CAs 
Networks that consist entirely of mobile devices are necessarily of a more ad-hoc 
nature than fixed networks.  Mobile devices that perform certain tasks in the network 
may simply not be present at all times.  For example, an extreme case is presented by 
the fact that mobile phones are prone to theft.  In the context of the personal PKI, the 
device whose absence most dramatically affects the operation of the system is the one 
acting as a personal CA.  For this reason, we consider the possibility of having several 
devices within one PAN that can act as CAs.  This redundancy makes the system 
more robust, since there is no single device whose absence would make secure 
communication within the PAN impossible. 

In every PKI an implicit (but fundamental) assumption is that the CA is secure.  In 
traditional PKIs, this is reasonable assumption, since a lot of effort is usually 
expended on keeping the CA physically secure.  The same however cannot be 
guaranteed for the personal CA in a PAN.  Mobile devices are prone to theft, and thus 
their security cannot be guaranteed.  Therefore, we need to make the reason why a 
personal CA is not present in the PAN absolutely explicit.  This case is typically 
characterised by one of the following two conditions: 

1. The device is compromised or suspected of compromise, e.g. as would be the case 
if it has been stolen (it may or may not be absent).  In this case, the user positively 
knows that the device cannot be trusted any more, and needs to transfer the CA 
functionality to another device. 
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2. The device is not present, but its security is not compromised.  This is a more 
common situation, where, e.g., the device is simply switched off. 

In this section, we describe (at a very high level) a solution for both situations.  
Throughout the section we make the following two assumptions: 

1. There are two or more devices capable of acting as CAs.  One is nominated as the 
Primary CA, and the others are Secondary CAs. 

2. All CAs are known to every device in the PAN.  More specifically, every device 
that enters the PAN is initialised with the primary CA, but is also given a trusted 
copy of every secondary CA’s public verification key.  

Hence, in a PAN with multiple CAs, we suppose that the secondary CA(s) is (are) 
also known to every device in the PAN.  Hence, if the secondary CA has to take 
over primary CA responsibilities, then every other device in the PAN will 
recognise it as a valid CA.  At any time, all the CAs are kept synchronised.  This 
can be achieved as follows: whenever the primary CA performs an operation, e.g., 
issues a new certificate, it informs the secondary CA, which keeps a state 
practically indistinguishable from that of the primary CA (e.g., the secondary CA 
has a list with all certificates issued by the primary CA).  We can also suppose 
that the primary CA equips every newly imprinted device with a copy of the 
public key of all secondary CAs, at the same time as it transfers its own public 
key. 

Of course, some additional organisational aspects have to be taken into account. A 
policy for the PAN-PKI-structure has to be specified.  This shall cover issues such as 
what happens when a CA is compromised, and who defines which component is the 
primary and which components are secondary CAs.  Furthermore an imprinting 
method for the CAs themselves has to be negotiated. 

We now describe the actions that have to be taken when one of the above situations (1 
or 2) arise. 

4.2.1 Primary CA compromised 

In situation 1, i.e., when the primary CA is compromised, rather extreme measures 
have to be taken.  This is because the corrupted CA may corrupt the secondary CAs or 
even take over the PAN, if the secondary CAs are not notified immediately.  Clearly, 
little can be done to secure the inter-PAN communications after the primary CA is 
corrupted and before the PAN is notified.  However, one must make sure that once the 
PAN is notified, secure communications can resume.  To achieve that, the whole 
system must first be put into the state that existed prior to any initialisation.  Thus, 
either a new primary CA has to be set up and used to imprint every device in the PAN 
(just as happened originally), or a list of valid CAs has to be entered into each device 
manually (or in any other secure way, e.g. as was used to originally initialise the 
devices).  In the latter case the list will obviously not contain the corrupted CA, and a 
new CA is nominated as primary, and the devices are initialised one by one with the 
new primary CA. 

4.2.2 Primary CA switched off 

In situation 2, i.e., when the primary CA is secure but not present, the transition is 
smoother.  Of course, one could treat this situation in the same way as the previous 
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one, but this would incur unnecessary re-initialisations.  After all, the absence of a CA 
may not be noticed at all by the devices in the PAN (i.e. if no device in the PAN 
needs the CA during its absence).  This should be taken into account in the proposed 
solution; actions (and thus computational and communications overheads) should be 
kept to a minimum, and taken only when necessary.  Following this principle, no 
action will be taken unless the secondary CA is contacted. 

4.2.3 Synchronisation issues 

Finally we consider issues of synchronisation between the CAs of the system.  As was 
mentioned before, all secondary CAs are kept updated by the primary CA while they 
are in the PAN.  An issue that was left open arises in the situation where a (secondary) 
CA re-enters the PAN after a period of absence.  This CA has not been updated for 
the duration of its absence, and therefore keeping it updated from this point on is not 
enough.  Thus, at the time it re-enters the PAN, the secondary CA contacts the 
primary CA, and receives a signed list of the public keys of all devices, possibly 
including those that may not currently be in the PAN, but whose public keys are valid, 
and a CRL.  From this point on, the secondary CA is kept updated as discussed 
before. 

5. Device initialisation 

5.1 A protocol for device initialisation 
The security requirements for the device initialisation process have been listed in 
Section 3 above.  A protocol has been proposed by Gehrmann and Nyberg to meet the 
identified requirements – note also that this protocol has been previously described in 
annex 2 to [8].  We sketch this protocol below.  The results in [8] provide in full detail 
examples of protocols that can be used to securely transfer security parameters (e.g. a 
root certificate) from one device to another and/or ensure that both devices possess 
the same particular security parameter.  These protocols can be used for two devices 
to exchange PCA and PM, as described below. 

Before giving this protocol observe that, in order to operate successfully, the mobile 
device and CA must meet certain minimum requirements. 

• The personal CA must be equipped with a display and a simple input device for 
giving it commands. 

• The mobile device must possess a moderately sophisticated user interface – that is 
it must possess both the means for a user to input a sequence of digits (e.g. a 
numeric keypad or at least two buttons to insert a sequence of zeros and ones), and 
a simple output device, e.g. an audio output, to indicate success or failure of the 
initialisation process. 

The question of how to perform the initialisation process for mobile devices which do 
not possess a numeric keypad (or similar) is discussed further below in chapter 5.2. 

Finally note that we also assume that the mobile device and personal CA can 
communicate via an unsecured wireless interface. 
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5.1.1 Protocol specification 

The protocol operates as follows. 

1. The Personal CA must be reliably informed of the identifier for the mobile device.  
This could, for example, be achieved by the user typing the identifier for the 
mobile device into the keyboard of the Personal CA.  However, it could also be 
achieved as part of the protocol itself (see below). 

2. The Personal CA sends its public key PCA to the mobile device, and the mobile 
device sends its public key PM to the personal CA.  This transfer is assumed to 
take place via the wireless interface.  Along with PM, the mobile device can send 
any other information it wishes to have included in the public key certificate 
which the personal CA will generate (again via the wireless interface).  This 
could, for example, include the identifier for the mobile device. 

3. The Personal CA now generates a random key K, where K is suitable for use with 
a MAC function shared by the Personal CA and the mobile device.  Using this key 
K, the Personal CA computes a MAC as a function of PCA, PM and any other data 
supplied by the mobile device.  The MAC and the key K are then output by the 
personal CA (e.g. via a display attached to the personal CA). 

4. The user now types the MAC and key K into the mobile device, which uses the 
key K to recompute the MAC value (using its stored versions of the public keys 
and associated data).  If the two values match then the mobile device gives a 
success signal to the user.  Otherwise it gives a failure signal. 

5. If (and only if) the mobile device emits a success indication, the user instructs the 
personal CA to generate an appropriate public key certificate.  This certificate 
generation must only take place after the mobile device has given the required 
positive indication.  This certificate can then be sent (unprotected) to the mobile 
device via the wireless interface. 

6. The mobile device now performs two checks before accepting the certificate.  
Firstly the mobile device checks the signature using the personal CA’s public key 
(PCA).  Secondly the mobile device verifies that the data fields within the 
certificate (including the public key PM and the identifier for the mobile device) 
are all as expected.  The protocol is now complete. 

5.1.2 Implementation considerations 

Apart from meeting the security objectives of the initialisation process, a further 
primary objective for the design process is to minimise the length of the data strings 
that the user has to type into the mobile device.  This is important for several reasons. 

• Firstly, the user will wish the initialisation process to be as quick and simple as 
possible, arguing in favour of the minimum number of required keystrokes.  This 
is accentuated by the fact that the keypad on the mobile device may be rather 
small and awkward to use for large strings of data (notwithstanding the ability of 
many users of existing mobile devices to send text messages using small numeric-
only keypads). 

• Secondly, the initialisation process should have a high probability of successful 
completion.  This will clearly not be the case if the user is required to enter a large 
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number of digits, especially using a small keypad and/or with a small or non-
existent display to give feedback. 

• Thirdly, if typing in long data strings is necessitated by the scheme, then it might 
be just as simple to type in the respective public keys, thus avoiding the threats 
that arise from use of the wireless interface. 

In the protocol specified in Section 5.1.1, this minimisation of data entry can be 
achieved by using a very short key K and a very short MAC.  For example, if the key 
and MAC both contain 4 decimal digits, then the probability that an attacker can 
successfully manipulate any of the information protected by the MAC is very small.  
(The precise effects of particular parameter choices on the security level of the 
protocol are discussed in more detail in Section 5.1.4 below). 

5.1.3 Proof of possession requirements 

In some circumstances, before generating a certificate, it is necessary for a CA to 
ensure that the requester of a public key certificate knows the private key 
corresponding to the submitted public key.  To provide this service, the mobile device 
could supply a ‘proof of possession of the private key in step (2) of the protocol 
specified in section 5.1.1 above. 

The nature of this proof of possession will vary depending on the ‘type’ of the mobile 
device’s public/private key pai r.  For example, if it is a signature key pair, then the 
private key can be used to create a ‘self-signed certificate’, i.e. a signature generated 
using the mobile device’s private key on a string containing the mobile device public 
key and the mobile device’s identifier.  

A detailed discussion of proof of possession in PAN scenarios is given in section 6. 

5.1.4 Analysis of protocol 

The purpose of the protocol described in Section 5.1.1 is to transfer the public keys 
and other data needed for production of the certificate. All data to be transferred is 
assumed to be public.  Therefore the security goal is to protect the integrity of the 
data, not the confidentiality.  The necessary integrity protection is performed using the 
MAC-based checking procedure in steps 3 and 4 of the protocol. 

The security threat against the protocol is an active adversary who by any possible 
means tries to modify the data exchanged between the CA and the mobile device in 
step 2.  If such a modification, insertion of new data or deletion of data takes place on 
the wireless communication between the devices then the data sent by one party will 
be different from the data received by the other party. 

The adversary is successful, if the integrity protection method fails to detect 
modification of data.  In what follows the probability of failure is determined. 

For the security analysis of the protocol it is essential to observe that the 
communication channel used for the checking procedure in steps 3 and 4 is 
completely independent of the wireless communication channel used for other 
exchanges of data in the protocol. 

Also different instances of the protocol are independent.  This is due to the fact that 
for each protocol instance the key K is randomly generated.  The key is generated 
independently for each protocol instance and for each MAC computation.  This 
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means, in particular, that even if the data between two protocol instances are strongly 
related, the respective MAC values computed using different keys are independent.  
To achieve this randomisation property of MAC the length of the key should be larger 
than or equal to the length of the MAC value. 

Let m be the bit length of the MAC and k the bit length of the key.  Then the 
adversary is successful either if he guesses the key K correctly, or if the guess for the 
key is not correct, but the MAC values for the different data happen to be the same.  
Hence the probability of success is 
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For a fixed total length of the bit string to be entered to the mobile device, this 
probability is minimised if the lengths of the MAC and the key K are equal, that is, if 
m = k, in which case the success probability for an adversary is approximately equal 
to 21-k. 

5.2 Initialisation methods for limited devices 
In section 5.1 above, it was demonstrated how device initialisation can be achieved 
provided that the two communicating devices have sufficient input/output capabilities.  
In particular, it was assumed that they have numerical keypads and displays.  The 
purpose of this section is to study the same problem in the case where when one of the 
two devices has very limited input/output capabilities.  For the rest of the section we 
assume that one of the devices (the one acting as the personal CA) has both a 
numerical keypad and a display. 

5.2.1 Case 1: no numerical keypad 

Here we assume that the very limited device does not have a numerical keypad, but 
does possess a display.  In this case, essentially the same protocol that was given in 
5.1 is used.  In the description of the protocol, we adopt the following convention: 
device A is the very limited device, and device B is the device with both display and 
keypad, i.e. the CA. 

1. Device A sends to device B its value XA. 

2. Device B sends to device A its value XB. 

3. Device A generates a temporary PIN K, and displays it. 

4. Device A sends MACK(XA ,YB) to device B, where YB  is the value received by A. 

5. The user enters K into device B. 

6. Device B uses K to compute MACK(YA ,XB), where YA is the value received by B. 

7. If the received MAC matches the computed MAC then device B accepts, and 
notifies the user.  If not, then device B rejects and notifies the user. 

The correctness of the protocol rests on the observation that if the values XA and XB 
are not tampered with then the protocol terminates successfully.  The protocol is also 
secure against online attacks because the attacker would have to intercept the MAC 
and substitute it with a value M, such that M = MACK(YA ,XB), if device B is to accept 
(and the attack to be successful).  However, finding such a value M can be done with 



12 

a very small probabili ty, since the key K is not exposed to the attacker.  Of course, the 
key K can be recovered by an off line search (after the key exchange has been 
completed successfully), but this is not a problem, since a new value K is used for 
each execution of the protocol. 

5.2.2 Case 2: no numerical keypad/display 

Now we assume that the limited device has neither a numerical keypad nor a display.  
The problem now becomes considerably harder, as device A can only communicate 
over an unauthenticated channel.  Note that in the protocol of the previous section, the 
assumption that A has a display provided an authenticated channel (namely the user), 
which could be used for very limited data (namely a short PIN).  We see no way to 
achieve our goal unless we assume that this “user channel” is available.  Our 
assumption for this section is that the very limited device A comes with a pre-installed 
PIN, which is known to the user.  Then the protocol of section 5.2.1 can be used 
safely, but only once!  This is because an off line attack will reveal the password to the 
attacker, who can then use it in subsequent executions of the protocol.  One solution 
to this problem is the following: execute the protocol for the first time, to exchange 
the authenticated data.  This data essentially give public key capabiliti es to the device 
A.  The first thing to do then for device A, is to send a new encrypted PIN to the 
device B (the personal CA), which is securely stored.  This is the new PIN to be used 
if the private key of device A is compromised, and there is no other way to exchange 
authenticated data with device B. 

Note that the new PIN will also need to be displayed to the user by device B, who will 
need to write it down and store it securely.  The new PIN should not be stored by the 
CA device, since this would potentially make the PIN available to anyone who steals 
or compromises the CA, preventing the secure re-initialisation of device A. 

6. Proof of possession 
Proof of possession is required to demonstrate the knowledge of the private key 
corresponding to the public key sent in a request to a certifying party. This concept 
has been used in conventional PKI for a long time.  Proof of possession in the 
personal PKI may be performed in a similar way.  Nevertheless we need to analyse 
whether the assumptions and requirements for the personal PKI will l ead to a different 
view of proof of possession.  Furthermore the scenarios where proof of possession is 
relevant in a PAN have to be identified. 

The idea of ‘ proof of possession’ of a private key as part of the public key 
certification process now appears to be well -established.  That is, to avoid certain 
‘source substitution’ attacks on cryptographic protocols, it is generally accepted that it 
is good practice for a CA to ensure that the submitter of a public key knows the 
corresponding private key.  This idea is now incorporated into PKI standards – see, 
for example, ISO/IEC 15945 [3]. 

Generally one can think of two different scenarios of source substitution attacks: 

• An attacker may request a certificate for a public key of another person, at the 
same time spoofing the other person’s identity.  

• An attacker may request a certificate for a public key of another person without 
spoofing the other person’s identity, i.e. using another identity.  
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6.1 Motivation for establishing proof of possession 
One example of why such a proof of possession might be useful is provided by the 
following description of a source substitution attack on the MTI/A0 key establishment 
protocol†, taken from Note 12.54 (pages 518/519) of the Handbook of Applied 
Cryptography [5].  To put this attack into context we also provide the description of 
the MTI/A0 protocol provided in 12.53 of the Handbook. 

We first give the protocol description. 

Protocol MTI/A0 key agreement 

SUMMARY: two-pass Diff ie-Hellman key agreement secure against passive 
attacks. 

RESULT: shared secret K known to both parties A and B. 

1. One-time setup.  Select and publish (in a manner guaranteeing 
authenticity) an appropriate system prime p and generator α of Zp

*, 2 ≤ α ≤ 
p – 2.  A selects as a long-term private key a random integer a, 1 ≤ a ≤ p -
2, and computes a long-term public key zA = αa mod p.  (B has analogous 
keys b, zB).  A and B have access to authenticated copies of each other’s 
long-term public key. 

2. Protocol messages. 

A → B : αx mod p  (1) 

A ← B : αy mod p  (2) 

3. Protocol actions.  Perform the following steps each time a shared key is 
required. 

(a) A chooses a random secret x, 1 ≤ x ≤ p - 2, and sends B message (1). 

(b) B chooses a random secret y, 1 ≤ y ≤ p - 2, and sends A message (2). 

(c) A computes the key k = (αy)a(zB)x mod p. 

(d) B computes the key k = (αx)b(zA)y mod p.  (Both parties now share the 
key k = αbx+ay mod p). 

The attack is then as follows. 

Source-substitution attack on MTI/A0 

As a general rule in all public-key protocols, prior to accepting the authenticated 
public key of a party A, a party B should have assurance (either direct or through a 
trusted third party) that A actually knows the corresponding private key.  Otherwise, 
an adversary C may claim A’s public key as its own, allowing possible attacks, such 
as that on MTI/A0 as follows. 

Assume that in a particular implementation, A sends to B its certified public key in a 
certificate appended to message (1).  C registers A’s public key as its own 
(legitimately proving its own identity to the certificate-creating party).  When A sends 
B message (1), C replaces A’s certificate with its own, effectively changing the source 
indication (but leaving the exponential αx sent by A to B unchanged).  C forwards B’s 
response αy to A.  B concludes that subsequently received messages encrypted using 

                                                 
† Thus this particular attack applies to key establishment key pairs. 
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the key k = αbx+ay originated from C, whereas, in fact, it is only A who knows k and 
can originate such messages. 

A more complicated attack achieves the same objective, this time with C’s public key 
differing from A’s public key zA.  C selects an integer e, computes (zA)e = αae , and 
registers the public key αae .  C then modifies αy sent by B in message (2) to (αy)e .  A 
and B each compute the key k = αaeyαxb, which A believes is shared with B (and is), 
while B believes it is shared with C. 

In both variations, C is not actually able to compute k itself, but rather causes B to 
have false beliefs.  Such attacks may be prevented by modifying the protocol such 
that the exponentials are authenticated, and binding key confirmation evidence to an 
authenticated source indication, e.g., through a digital signature. 

The Handbook ([5], page 537) also points out that active attacks related to the above 
attack are considered by Diff ie, van Oorschot, and Wiener [1], and Menezes, Qu, and 
Vanstone [6]. 

Although the above attack only applies to key pairs used for key establishment, other 
attacks can be constructed for protocols based on signature and/or 
encryption/decryption key pairs.  One very naïve attack applying to signature key 
pairs is as follows. 

Suppose A wishes to send a secret message to B, and wishes B to make an 
appropriate reply.  In order to ensure that the message is not available to 
anyone other than B, A encrypts the message using B’s public encryption key.  
In addition, in order that B can verify the origin of the message, A signs it 
using the private signature key of A. 

Meanwhile, malicious eavesdropper C has, by some means, arranged for A’s 
public signature verification key to be certified as belonging to C.  C now 
intercepts the signed encrypted message and prevents it reaching B.  C now re-
sends the message to B, claiming that it originates from C.  On receipt of the 
message, B verifies the signature using C’s public key, and verifies that it does 
indeed come from C.  B now replies to C (instead of to A), and in doing so 
may reveal the contents of the secret message. 

Finally note that it is considered good practice to design cryptographic protocols 
which are resistant to source substitution attacks – see, for example, [9].  
Nevertheless, this does not mean that, for the moment at least, it is safe to omit the 
Proof of possession step, since protocols not protecting against such attacks may stil l 
be in use. 

6.2 Assumptions and requirement for Personal PKIs 
We start by considering the issue of key generation.  There are various different ways 
in which a key could be generated.  When proof of possession is being considered, it 
is important to take into account the place and the time that a key is generated.  There 
are three main cases to consider. 

• The key-pair is generated by the user’s device.  This situation is essentially the 
same as in fixed network scenarios.  The certifying party has to use a proof of 
possession algorithm to obtain assurance that the requesting party is using a 
legitimate public key in the certificate request. 
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• The asymmetric key-pair is generated by the manufacturing party before the 
device is delivered to the customer.  In this situation the need for proof of 
possession depends on whether the user is able to read out the public and/or 
private key from the device.  Reading out the private key should not be possible 
for the user or an attacker.  If the key to be certified is sent in a secured way and 
can be linked to the requesting device, proof of possession might not be necessary. 

• The asymmetric key-pair is generated by the certifying party when the certificate 
is requested.  Proof of possession is not necessary in this context as both parts of 
the key pair are generated by the certifying party.  In this case the establishment of 
an authentic and confidential channel for the transport of the private key has to be 
supported. 

The second major issue concerns the type of the public key to be certified, typically 
one of Encryption, Signature verification and/or Key establishment (e.g. as used in an 
authenticated Diffie-Hellman key agreement protocol). 

If a public key to be certified is to be used for a particular purpose, then there may be 
restrictions on the way proof of possession is performed.  For example, if a private 
key is used for signing, then the request for a certificate for the corresponding public 
key may be signed with the private key, whereas a private key only permitted to be 
used to perform decryption operations may not be used to sign such a request.  Use of 
the wrong kind of PoP technique may result in a breach of security. 

In some cases the use of the private key to sign the message may merely break key 
separation rules; in other cases it may simply not be possible, e.g. if there is no known 
digital signature algorithm which employs key pairs of the appropriate form.  The 
typical case will probably be somewhere between these two extremes, in that, 
although a public key may be usable with a signature scheme, it may be usable with 
many such schemes, and it may not be simple to choose one.  For example, in most 
public key cryptosystems based on discrete logarithms, the public key is equal to a 
base value raised to the power of the private key – in such a case, there will be a very 
large number of signature schemes for which the key pair would be a valid key pair.  
The problem would then be of coming to an agreement between signer and verifier 
about precisely which signature scheme should be used. 

For any discrete logarithm based public key cryptosystems (including elliptic curve 
cryptosystems) the private key can be used to create an ElGamal signature on the 
certificate request, even if it is to be used subsequently as an encryption or key 
agreement key.  However, this might be a problem, since it breaks the usual key 
separation requirements.  One way of avoiding any problems might be as follows.  
Prior to computing the signature, generate a random value x, and if a is the client’s 
private key, then generate the signature using a+x as the input, and send x to the CA 
along with the signature and the public key ga.  The public key to verify the signature 
will simply be gagx. 

The various PoP techniques, as discussed in 6.4 below, must therefore be mapped to 
the kind of key which they can be used for. 

The third major issue is the nature of the algorithm to be used with the public keys.  It 
needs to be investigated whether the nature of the algorithm specified to be used with 
a certain key makes a difference as to how proof of possession should be achieved.  
One possible criterion might be whether or not a signing algorithm always produces 
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the same signature for a certain input, or whether the signature is different every time, 
as with RSA and El-Gamal based signatures respectively. 

The fourth and final issue concerns what information is passed to the verifier.  The 
party proving the possession of a private key sends some kind of information to the 
requesting party, i.e. the certifying party. The sensitivity of this information can be 
different depending on the PoP mechanism in use. Whereas in some case the 
informations may be non-critical, there may be mechanisms where the proving party 
is required to perform an action that enables an attacker to decrypt a certain message 
or, in the worst case, to compromise secret information. The proposed PoP 
mechanisms must therefore be further investigated with respect to zero-knowledge 
properties. 

6.3 Analysis of the necessity of proof of possession in 
different scenarios 
Certain scenarios may require PoP mechanisms, whereas in other scenarios PoP is not 
necessary.  Different factors may influence the necessity of PoP. 

As already mentioned, it is essential to consider where a key is generated.  When key-
generation is performed by the certifying party, and the private key is sent to the client 
together with the certificate, a PoP mechanism is certainly not necessary.  If a key is 
generated by the manufacturer and pre-installed on a device before shipping, proof of 
possession may be necessary if attacker could get hold of the public key before the 
device reaches its owner.  Proof of possession is not necessary if the authenticity of 
the key sent to be certified is secured with another mechanism.  One example of such 
a mechanism could be as follows. 

A manufacturer of smartcards pre-installs cryptographic keys on his cards.  In 
addition, a non-personal certificate is generated and included on tbe card simply to 
prove that the public key sent for certification was generated by the manufacturing 
party.  During the personal PKI certification request, this non-personalised certificate 
is sent with the request.  The certifying party then is at least sure that the owner of the 
card has sent a request, and will get suspicious if he does not receive a proper 
certificate from the certifying party.  That means that the only risk left is a man-in-
the-middle attack, that is likely to be discovered very quickly by the owner of the 
card.  Furthermore the issuing party can be sure that the public key to be certified has 
cryptographically good properties (as it was generated by the issuing party). 

A variant of the mechanism described above could be as follows: the manufacturer 
stores a key pair on the card and certifies the public key before the device is delivered 
to the customer, as described above. But, in contrast to the last approach, this key pair 
is not intended to be used by the customer for purposes other than proving the 
possession of a key or the possession of the device. 

Scenarios in which the key is generated by the requesting party, either on a hardware-
device like a smartcard, or with software mechanisms, will be the most interesting 
scenarios for PoP considerations.  Nevertheless, even in this case there may be 
scenarios where PoP is unnecessary.  An example of the latter could be a PAN 
scenario where people are in a local environment and can trust the transmission of 
data or the authenticity of the sending party with out-of-band mechanisms. 
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6.4 Proof of possession mechanisms 
We now consider a number of different mechanisms for establishing PoP.  All these 
mechanisms are in some way specialised in that they only apply to certain types of 
key pairs.  It would appear rather difficult, if not impossible, to devise general 
purpose mechanisms for PoP, applicable for all key pairs. 

1. Signature of the request or a part of the request 

In this approach a user generates a key pair or uses a key-pair that is already on 
his device or token. Before sending the request for certification of the public key, 
the request itself, or a certain part of the request, is signed by the corresponding 
private key, and the signature is added to the request.  If only a part of the request 
is signed, a dedicated solution might have to be developed, whereas signing the 
whole request may be done with standard signature mechanisms and standard 
applications. 

2. Signature of a certain value derived from the request 

This solution works like the one described in 1. The difference here is that the 
value to be signed is now not a direct part of the data of the request. 

3. Signature of a value that is independent of the request 

This solution works like the one described in 1. The difference here is that the 
signed value is independent of the request data. 

4. Prompt the user to decrypt a specified challenge 

This approach has to be used with care, as the user is giving away information by 
decrypting a value selected by the CA. This means that, in standard cryptograohic 
terminology, the user is acting as an oracle. As the proof of possession process is 
only performed once, i.e. during the certification process, it may nevertheless be a 
useful method.  This is especially likely to be the case if the decrypted message 
has to be in a pre-agreed format. In the case, if an attacker wants to use the user to 
decrypt an arbitrary challenge, the decrypted value will with very high probability 
not match the format, and the answer could be discarded by the party proving the 
possession of the private key. 

5. Prompt the user to decrypt a certain value and send back a value derived from 
the result 

To overcome the dangers as described under 4, the decrypted value could be input 
to a one-way-function before returning it to the CA.  So, if an attacker wanted to 
use the requesting party as an oracle, he would not get the original message but 
only the output from the one-way-function, and this will almost certainly not be 
useful to the attacker. 

6. Prompt the user to decrypt a certain value and to prove the knowledge of this 
value with a zero-knowledge protocol 

To avoid sending any information related to the private key but yet prove 
possession of the private key to the requesting party, a zero-knowledge protocol 
may be used.  Since no information about the secret (i.e. the decrypted value) is 
given away to the requesting party, a potential attacker gets no information at all. 
Only the legitimate requester can use the information to verify that the proving 
party is in possession of the decrypted value. The use of a zero-knowledge proof 
may, unfortunately, result in a more complex protocol, especially with respect to 
the number of steps to be performed. 
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7. Issue the certificate in an encrypted format, so that the requester is only able 
to get hold of the certificate if he is the owner of the private key 

This method may only be used in scenarios where the certificate is not published 
automatically. If automatic publication of the certificate takes place, the 
mechanism is of no use, as an attacker will be able to retrieve the certificate from 
the directory.  If the certificate is only distributed by pushing it to the requester, 
and is not available to pull from some directory, then this method is potentially 
very efficient. 

6.5 Proof of possession in standards 
Proof of possession is also an issue addressed in standards.  The IETF has produced 
two RFCs which deal with PoP. 

• IETF RFCs 2511: Internet X.509 CRMF (Certificate Request Message 
Format). 

RFC 2511 discusses the PoP issue briefly and proposes some of the methods 
mentioned above.  As discussed here, RFC 2511 distinguishes between the uses of 
a key, and signing and decrypting are essentially the proposed mechanisms.  As a 
third alternative the computation of a MAC on the certificate-request with a key 
derived from a secret, shared between the CA/RA and the requesting party, is 
proposed.  This approach may not be of use in our scenario, as this assumption 
will probably not hold in PAN scenarios.  A message format for PoP is given as 
follows: 

The general structure lists the type of possible PoP-mechanisms: 
   ProofOfPossession ::= CHOICE { 
       raVerified        [0] NULL, 
       signature         [1] POPOSigningKey, 
       keyEncipherment   [2] POPOPrivKey, 
       keyAgreement      [3] POPOPrivKey } 
 

The format of the different mechanisms is a follows.  (Some parts have been 
omitted, for a full description see RFC 2511) 
   POPOSigningKey ::= SEQUENCE { 
       poposkInput         [0] POPOSigningKeyInput OPTIONAL, 
       algorithmIdentifier     AlgorithmIdentifier, 
       signature               BIT STRING } 
 
   POPOSigningKeyInput ::= SEQUENCE { 
       authInfo            CHOICE { 
           sender              [0] GeneralName, 
           publicKeyMAC        PKMACValue }, 
       publicKey           SubjectPublicKeyInfo }   
 
 
   POPOPrivKey ::= CHOICE { 
       thisMessage       [0] BIT STRING, 
       subsequentMessage [1] SubsequentMessage, 
       dhMAC             [2] BIT STRING } 
 
   SubsequentMessage ::= INTEGER { 
encrCert (0), 
challengeResp (1) } 
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• IETF RFC 2875: Diff ie-Hellman Proof-of-Possession Algor ithms: 

This RFC provides two methods for generating an integrity check value from a 
Diffie-Hellman key pair. The two different approaches differ depending on 
whether or not they use information concerning the receiver. The first solution 
produces a PoP value that can only be verified by the intended recipient, whereas 
in the second solution a PoP value is generated which everyone can verify. 

• ISO/IEC 15945: Information technology – Secur ity techniques - 
Specification of TTP Services to support the Application of Digital Signatures 

As this standard only applies to signature keys, PoP is viewed purely from this 
perspective.  The mechanisms and the syntax used for PoP of the signature keys 
are similar to the ones from RFC2511, as described above. Of course, the syntax 
in this standard is reduced to the relevant parts, i.e. the parts describing the use of 
PoP for signature keys (signature [1] POPOSigningKey). 

6.6 Efficiency of POP-mechanisms 
In the table below, the main properties of the mechanisms described in Section 6.4 are 
summarised. 

Mechanisms Steps to perform Computational 
complexity 

1. Signature of the request or a certain 
value 

Client: sign 

CA: verify 

Two PK operations 

2. Signature of value derived from 
request 

Client: sign 

CA: verify 

Two PK operations 

3. Signature of an independent value Client: sign 

CA: verify 

Two PK operations 

4. Prompt the user to decrypt a 
challenge 

Client: Send public key 

CA: send challenge 

Client: decrypt and return 

CA: verify 

Two PK operations 

5. Prompt user to hash a decrypted 
value X 

Client: Send public key 

CA: send challenge 

Client: decrypt X & hash 

CA: verify 

Two PK operations,  
Hash computation is 
negligible  

6. Zero-Knowledge proof Depending on the 
concrete implementation 

Depending on the 
concrete 
implementation, but 
probably higher than the 
other mechanisms 

7. Encrypted issued certificate CA: encrypt 

Client: decrypt 

Two PK operations 
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6.7 Suitability of the methods for mobile environments 
The most convenient mechanism to prove possession of a private signing key is 
probably to sign the complete request for certification.  It is possible that the signature 
is only on the request-format, e.g. on a PKCS#10 structure or over a whole message 
containing the request.  No particular dangers have been identified for this 
mechanism.  To sign only parts of the request or an independent value is only slightly 
more efficient, as the hash-function before signing might be performed faster, but the 
signature process is certainly less standardised than signing the whole message. 

In case of PoP for an encryption key, the selection of mechanism will depend on a 
careful analysis of the precise implementation evironment.  The most critical factor in 
this context is the leakage of information from the proving party.  This potential 
danger can be overcome by using zero-knowledge protocols, but these protocols are 
generally more complex and time-consuming. 

The efficiency of the proposed methods can be summarised as follows.  Just signing 
the request or parts of it requires two steps and two PK-operations to be performed, 
the signature by the requester and the verification of the signature by the certifying 
party.  The number of steps grows to four where the decryption of a challenge is part 
of the PoP process, although the number of PK-operations to be performed does not 
change and is therefore two. 

7. Revocation in personal PKIs 

7.1 Assumptions and requirements for Personal PKIs 
• Structure of the PAN 

A PAN is usually a relatively small structure so it may be possible to implement 
the management of revocation information in a different way to conventional 
methods, where a large number of entities are involved. 

• Availability of all PKI-users to the CA 

In a PAN the availability of the users might be greater than in conventional PKI 
environments, as the number of users is likely to be much smaller.  This means all 
users can be reached at a certain time, or the CA can keep track of which users 
have not received revocation information, so that the CA can pass on the 
information at the next login. 

• Structure of the used certificates 

The structure of the used certificates might be adapted to the particular 
requirements of a PAN. 

7.2 PAN-specific versus general revocation mechanisms 
In conventional PKIs ‘pull mechanisms’, such as the provision of revocation lists or 
online status mechanisms, are typically used to provide access to revocation 
information.  This is the case for the following reasons. 

• Often a large number of clients take part in the PKI.  Thus ‘push’ services would 
lead to a bandwidth problem and associated management problems for the CA.  A 
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broadcast service could be implemented, but then clients not logged in during the 
broadcast would not receive the most recent revocation information. 

• Large PKIs are usually long-term PKIs, where revocation information has to be 
provided covering a lengthy time period. 

• Not all clients are always online, and so some will not receive all revocation 
information that is distributed. 

• Not all clients are interested in revocation information at all times.  This would 
make a broadcast potentially inefficient. 

• The revocation information gets so large that not all clients are able to cache the 
information.  Thus it must be possible to load the information when required. 

In contrast to conventional PKIs, push services can probably be implemented in 
Personal PKIs, as the following assumptions hold. 

• Personal PKIs may be short-term PKIs.  Therefore revocation information may 
only be relevant for a short time.  The issuing of ‘renewed’ certificates on a more 
frequent basis might not be a problem due to the small number of certificates in 
the structure.  In consequence one might introduce short term certificates that are 
only valid for a short period of time and have to be renewed frequently, e.g. every 
day, as is already done in WAP in the SSL-server-certificate context.  This could 
result in the removal of any need for revocation mechanisms. 

• Only a restricted number of parties take part in the Personal PKI.  Therefore more 
time or resource consuming mechanisms (such as the issuing of short term 
certificates as described above), that do not scale in large PKIs, might be feasible 
for implementation in the PAN scenario. 

• When components make use of Personal PKI they are online.  Therefore 
revocation information can be pushed to them when logging in to the Personal 
PKI.  The limited number of PKI users in a PAN makes it possible for the CA to 
keep track of the users and the revocation information that they have already 
received. 

7.2.1 Mechanisms adapted from conventional PKIs 

Revocation mechanisms used in traditional PKIs can be adapted to perform 
revocation management in Personal PKIs as well. The two general approaches, i.e. 
using CRLs or requesting status information online, can be implemented. A short 
summary of the discussion of relevant issues follows. 

CRLs 

A major fault with CRLs is that, in the mobile domain, they cannot be used to provide 
up to date certificate revocation information because their size means that mobile 
bandwidth considerations prevent updates of CRLs, and infrequent CRL updates 
considerably reduces the effectiveness of CRL use.  (Of course, this does not 
necessarily rule out the use of delta-CRLs, but they carry their own significant 
management overhead). 

Therefore we focus on the online status protocols OCSP and XKMS: 

OCSP 
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OCSP, as an online revocation method, uses signed messages from the OCSP 
responder to the client (in our case a mobile handset) to convey revocation 
information.  The purpose of OCSP is to provide revocation status and nothing else.  
OSCP has been developed by the IETF PKIX group.  Several vendors, such as 
Baltimore, Valicert, VeriSign, Entrust, provide OCSP client and server 
implementations. OCSP provides server authenticity, as in OCSP it is mandatory for 
all responses to be signed.  OCSP also offers optional client authenticity, in that the 
client may sign OCSP requests.  This could be used if the OCSP responder only 
wishes to give responses to authorised requesters.  OCSP offers protection against 
replay attacks by including a nonce within every message sent.  The requester 
includes a randomly chosen nonce in his response, and the responder extracts this 
nonce and places it in the response.  The requester can then check if the packet has 
been replayed by verifying that the nonce in the response is that sent in the request.  
The inclusion of the nonce is an optional feature. 

XKMS 

XKMS, like OCSP, provides an online certificate revocation checking method.  
XKMS, however, offers more than just certificate revocation; it can also check the 
certificate validity and process a certificate chain path.  It also allows for key 
registration.  Compared to OCSP, XKMS is a fairly new specification.  It has been 
published within the World Wide Consortium (W3C) as a “technical note”, which 
means it is not a standard as yet. A client supporting XKMS will have to support the 
verification of XML digital signatures and will have to support XML.  All XKMS 
responses are signed with XML digital signatures.  The revocation status of the public 
key corresponding to the XKMS signed responses is ambiguous, as the specification 
does not define a way of validating the corresponding public key certificate, it is 
simply assumed to be trusted. XKMS protects against replay attacks by using a 
transaction ID in each request.  The transaction ID is comparable to the nonce issued 
within OCSP.  This is not a mandatory feature within XKMS.  The transaction ID 
should be unique within a client with regard to a particular certificate.  The use of the 
term “ transaction ID” suggests that the client must use the transaction ID as a 
sequence number but in practice the client could just generate a nonce in each case. 

If the two online status protocols are compared, the following conclusions can be 
drawn.  Signed OCSP responses and requests are nearly four times shorter than 
XKMS messages.  The size differences between XKMS and OCSP are purely based 
on the encoding and format of the two schemes, and do not depend on any differences 
in security functionali ty offered.  It is clear therefore that, on memory and bandwidth 
grounds, OCSP requests and responses are preferable in the wireless world, as they 
use less bandwidth (typically all responses will be signed to authenticate the 
responders). The encoding method for OCSP messages is preferred to that of XKMS 
as the mobile world has already limited ASN.1 encoding support, whereas support for 
XML within the mobile world is still very scarce.  This fact would enable OCSP 
implementation (particularly on the client side) to be developed more quickly than 
XKMS implementations. However, XKMS provides more services than OCSP.  
OCSP only provides a certificate revocation service, where XKMS provides a whole 
certificate revocation, validation, key registration solution which wil l look more 
favourable as technology improves.  Overall , OCSP seems to be the preferable 
solution for certificate revocation in the short-term future because of the significantly 
smaller size of its messages, and the fact that it can be implemented more easily on 
the client side. 
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7.2.2 PAN-specific mechanisms 

Because of the particular characteristics of a personal PKI, new mechanisms to 
manage revocation, not appropriate for traditional PKIs, can be used.  Generally the 
new situation is that the PKI is a relatively small structure.  Therefore it may be 
possible to implement some kind of push mechanism.  That means that a member of 
the PKI gets informed automatically about recent revocation incidents.  Several 
possible models for this can be devised. 

• CA-based distribution models: 
1. Automatic distribution of newly generated CRLs 

This requires the CRLs not to be too big.  It is not the most elegant 
approach, as the CRL concept was intended to be a pull concept.  The 
major advantage could be that the CRL concept is more up-to-date as the 
lists can be pushed when a new entry has been added.  Of course this 
mechanism is only efficient when there are not too many revocations. 

2. Automatic distribution of new revocation incidents 
This solution requires the introduction of a new protocol/application which 
is able to store single revocation incidents or put them together and store 
them authentically on client-side.  In comparison to the distribution of 
complete CRLs it is a more efficient way to distribute only recent 
incidents, but as past experience indicates, the introduction of new 
functionality on the client is always problematic. 

3. Automatic distribution of  CILs (Current Identity Lists) 
Instead of ‘black-lists’ we introduce the distribution of ‘white -lists’.  This 
has the advantage, that a user can be sure that a certificate is not revoked 
and that this certificate was issued by the concerned CA.  The use of 
white-lists only makes sense when the number of participants is not too 
big. The time at which white-lists are published must be specified.  Of 
course the current list has to be sent to new members and members re-
entering the PAN.  A question in this context is whether clients already 
logged in get the whole list again when a new member enters the PAN, or 
whether there may be another mechanism just announcing the new 
member, as for the proposed mechanisms to distribute revocation incidents 
only (see above). 

• Ad-hoc-distribution of CRLs (as already discussed in section 2.2) 
4. The idea behind this approach is that the distribution of CRLs is done 

between the clients, so that the necessity to contact a directory is removed.  
Determining the currency of CRLs can be handled by introducing serial-
numbers or time-stamps, and clients always update to the most recent 
version. That is, whenever mobile devices communicate, they exchange 
the serial number (or time-stamp) of the CRL they possess.  If one device 
has a higher serial number than the other then it passes the latest CRL to 
the other device.  Thus the latest CRL should disseminate across the PAN 
very rapidly, without requiring any active support from the personal CA.  
Such an approach may even be appropriate in other networks, although 
that is outside the scope of this discussion. 
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7.2.3 Issues with local caching in clients 

An important question for revocation in PAN scenarios is whether very limited 
devices can cope with certain revocation information at all.  In the case of very 
limited devices, storage space may be an issue.  Therefore the caching of CRLs may 
not be possible on every device.  Usually revocation lists will not get very large in 
PAN scenarios, as there are only a small number of components taking part in the 
local PKI; nevertheless there may be scenarios where a list can get longer.  One 
example of this latter case may arise in a PAN having a lot of guest-members.  The 
question here is whether the personal CA has the capability to issue a certificate to 
those parties having only a short validity period; therefore avoiding the necessity to 
revoke many certificates. 

7.2.4 Support of multiple mechanisms 

As discussed in the previous section, mechanisms exist that are attractive for a certain 
class of devices, whereas they may be less attractive or even infeasible for another 
class.  Thus there many be a need to integrate at least two revocation mechanisms in 
one PAN.  New issues may arise from the introduction of different mechanisms. 

• It could be necessary to implement additional logic on the personal CA device. 

• If push mechanisms are used, devices in the PAN must be able to cope with 
them, i.e. evaluate the pushed information or discard it if an evaluation is not 
possible. 

7.3 Suitability of the methods for mobile environments 
PANs offer many possibilities for implementing revocation mechanisms differing 
from the ones familiar in fixed network scenarios.  Currently these novel mechanisms 
are only proposals, and have not yet been implemented.  It will be difficult to 
implement mechanisms that relate to the client software, as this functionality must 
first be standardised.  Nevertheless, as PAN scenarios get more and more attention in 
the mobile world, and given that PANs will be an essential part of tomorrow’s mobile 
infrastructure, it is necessary to consider these concepts and to develop solutions that 
may be more efficient than the ones available today. 

8. Summary and Conclusions 
After defining the requirements for PKI in a personal area network, we have looked at 
concrete issues such as imprinting devices, management of certification authorities 
and revocation mechanisms. The discussions in this paper have shown that whilst 
many mechanisms and protocols from the fixed network environment may be used or 
adapted for the PAN environ,ent, new mechanisms, not feasible in conventional fixed 
network PKI scenarios, may be advantageous in PANs. The latter category of 
mechanism is probably best represented by the new imprinting protocols where the 
user has to act as a trusted channel and by the various scenarios proposed for 
revocation checking based on push-mechanisms. 
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