Undetachable threshold signatures

Niklas Borselius Chris J. Mitchell
Aaron Wilson
Mobile VCE Research Group,
Information Security Group,

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

July 15, 2001

Abstract

A major problem of mobile agents is their inability to authenticate trans-
actions in a hostile environment. Users will not wish to equip agents with
their private signature keys when the agents may execute on untrusted plat-
forms. Undetachable signatures were introduced to solve this problem by
allowing users to equip agents with the means to sign signatures for tightly
constrained transactions, using information especially derived from the user
private signature key. However, the problem remains that a platform can
force an agent to commit to a sub-optimal transaction. In parallel with the
work on undetachable signatures, much work has been performed on thresh-
old signature schemes, which allow signing power to be distributed across
multiple agents, thereby reducing the trust in a single entity. We combine
these notions and introduce the concept of an undetachable threshold sig-
nature scheme, which enables constrained signing power to be distributed
across multiple agents, thus reducing the necessary trust in single agent plat-
forms. We also provide an RSA-based example of such a scheme based on a
combination of Shoup’s threshold signature scheme, [7] and Kotzanikolaou
et al’s undetachable signature scheme, [3].

1 Introduction

A digital signature is the electronic counterpart to a written signature. Thus
one way to commit to an electronic transaction is by the use of a digital

signature. Recently, the use of mobile agents to commit to transactions
for a user has become a topic of interest. Mobile agents, however, face
the problem of having to execute in a hostile environment where the host
executing the agent has access to all the data that an agent has stored (for
instance the private signature key). Consequently, the problem of allowing
an agent to sign a transaction on behalf of a user is one of interest.

Undetachable signatures were first proposed by Sander and Tschudin [5] to
solve this problem, and are based on the idea of computing with encrypted
functions. The host executes a function s o f, where f is an encrypting
function, without having access to the user’s private signature function s.
The security of the method lies in the encrypting function f. Whilst Sander
and Tschudin were unable to propose a satisfactory scheme, more recently
Kotzanikolaou, Burmester and Chrissikopoulos [3] have presented an RSA-
based scheme which appears to be secure.

The idea of an undetachable signature is as follows. Suppose a user wishes
to purchase a product from an electronic shop. The agent can commit to
the transaction only if the agent can use the signature function s of the
user. However as the server where the agent executes may be hostile, the
signature is protected by a function f to obtain ¢ = so f. The user then
gives the agent the pair (f,g) of functions as part of its code. The server
then executes the pair (f,¢) on an input z (where z encodes transaction
details) to obtain the undetachable signature pair

f(z) =m and g(z) = s(m).

The pair of functions allows the agent to create signatures for the user whilst
executing on the server without revealing s to the server. The parameters of
the function f are such that the output of f includes the user’s constraints.
Thus m links the constraints of the customer to the bid of the server. This
is then certified by the signature on this message. The main point is that
the server cannot sign arbitrary messages, because the function f is linked
to the user’s constraints.

However, one problem with this approach is that the agent is still given
the power to sign any transaction it likes, subject to the requirement that
the transaction must be consistent with the constraints used to construct
f. Thus, for example, whilst the constraints may limit the nature and/or
value of a transaction, a malicious host may force an agent to commit to a
transaction much less favourable than could be achieved.

Thus, to protect further against malicious hosts, a user may wish to use
more than one agent and have the agents agree on a bid before committing
to it. Hence, a user may send out n agents with the criteria that k& of them

must agree before committing to a purchase. The obvious solution to such a
requirement is to employ a threshold signature scheme, meaning that agents
can all sign the bid they think ‘best’ given the user’s requirements, and then,
on receipt of a sufficient number of these bids, the user’s signature can be
reconstructed.

However, such a scheme does not possess the means to constrain the power
given to a quorum of agents. This motivates the introduction of the concept
of an undetachable threshold signature which both distributes signature au-
thority across multiple agents and simultaneously constrains the signatures
that may be constructed.

The rest of the paper is as follows. In Section 2 we outline the undetachable
signature scheme of [3], and in Section 3 we briefly review threshold signa-
tures and give a method of Shoup [7] to construct such a scheme. Finally,
in Section 4 we define the concept of an undetachable threshold signature,

and show how an example of such a scheme may be obtained by combining
the schemes of [3] and [7].

2 RSA Undetachable signatures

We briefly present the RSA undetachable signature scheme given in [3]. The
user sets up an RSA signature pair in the usual manner, that is the user
selects an RSA modulus n which is the product of two primes p and ¢, and a
number e such that 1 <e < ¢(n)=(p—1)(¢g—1) and ged(e,p(n)) = 1. Let
d be such that 1 < d < ¢(n) and ed = 1 mod ¢(n). The user then publishes
the verification key (n,e) and keeps d as the private signing key.

Let I be an identifier for the user and R the encoded requirements of the
user for a purchase (we assume that R is encoded in a manner which is
understood by all parties). Let h be an appropriate hash-function (i.e. one
giving a value in Z,). The user then forms H = h(I, R).

The user then gives an agent the user identifier, the requirements, and the
pair (H,G) as its undetachable signature, where G = H? mod n. To sign
a bid B (which we assume is in the same format as R), the executing host
calculates = h(B). The undetachable signature is then the pair (H", G").
We note that,

G"=(HY" = H" = H" = (H")"

so that the server has signed the value H” with the user’s private key.

We briefly note that this scheme appears secure, and a proof of this fact

is given in [3]. To forge a signature on a different set of requirements R’ a
malicious host would need to forge H' = h(I,R'), G' = (H")? and (G')".
Clearly the only work needed here is to forge G/, and this would require
knowledge of a user’s private key. Having said this, there is nothing in this
scheme to prevent a host from signing more than one bid, or presenting a
bid that just meets the requirements of the user (as opposed to a possibly
better standard offer).

3 Threshold Signatures

The idea of a threshold scheme is to take a secret, and divide it into pieces
called shares which are distributed among a group of entities. Then any
subset of these entities of a given size can reconstruct this secret, but a
smaller group can learn no information about the secret. An example of
such a scheme is given in [6].

Threshold cryptography was first proposed by Desmedt [2]. One important
type of threshold cryptosystem is known as a threshold signature. In such a
scheme, any set of k parties from a total of [parties can sign any document,
and any coalition of less than k parties cannot sign a document. Such
schemes tend to rely on a combiner which is not necessarily trusted. Several
schemes have been proposed based on both Fl Gamal and RSA cryptography
(see, for example, [7] for a short survey). Recently Shoup [7] proposed an
RSA scheme which is as efficient as possible; the scheme uses only one level
of secret sharing, each server sends a single part signature to a combiner,
and must do work that is equivalent, up to a constant factor, to computing
a single RSA signature.

Although in some sense not perfect as a threshold signature scheme (as it
relies on a trusted party to form the shares) this scheme is ideal in our
setting, where the user dispatching the agent will always (one would hope)
trust themselves. (Note that an alternative scheme without a trusted dealer
is given in [1]. This scheme also improves on [7] by not relying on an RSA
modulus made up of ‘safe primes’). An example of an El Gamal based
scheme is given in [4].

We next briefly outline the threshold signature scheme of [7].

The user (dealer) forms the following:

e An RSA modulus n = pg where p = 2p' + 1 and ¢ = 2¢’ + 1 are safe
primes, i.e. p', ¢’ are prime.

e A public exponent e where e is prime and a private key d, where de = 1
(mod p'q").

¢ A polynomial f(z) = Zf;ol a;z' where ag = dand a; € {0,...,p'¢'—1}

(selected at random) for 1 < i < k.

e [(n), the bit length of n, and L, a secondary security parameter —
Shoup [7] suggests Ly = 128.

e The [signature key shares of the scheme s;, where each s; is selected
at random from the set {s]0 < s < 2L+ s = £(5) mod (p'¢’)}.

e The verification keys VK = » and VK; = v»* where v € @,, the
subgroup of squares of Z.

A global hash function h mapping into Z.

e A second hash function g whose output is an Lq-bit integer.

In this scheme a shareholder signs a message m in the following manner.
Firstly the shareholder calculates the hash of the message, i.e. # = h(m).
The signature share of a shareholder ¢ then consists of

z; = $2Asi

and a ‘proof of correctness’ (note that A = [!). The proof of correctness
is basically just a proof that the discrete logarithm of z? to the base A
is the same as the discrete logarithm of v»; to the base v. Let L(n) be
the bit length of n. The shareholder then chooses a random number r €
{0,...,2M09430 _ 1) and computes

o =", 2 = 2Py, e = g(v“'LAA7 vi, v, 2'), 2 = s;e+ 7
The proof of correctness is then (z,¢) which can be verified by calculating

;EZ»_QC).

A $4AZ

_ 4 . 2 .z .—cC
C—g(?J7£L‘ 70“1‘“?]?]2» 9
To combine the shares the combiner acts as follows. Assume we have valid
shares from a set S = {i1,49,...,1x} of shareholders. The combiner com-
putes

i
A=A —_—.
0 11 (i)
i€S\{s}
These values are derived from the standard Lagrange interpolation formula.

These values are integers and it is clear that they are easy to compute. We
also have, from the Lagrange interpolation formula that,

A f(0) =Y A5 f(j) mod (§'q).

jE€S

In other words we have,

d.A:zAgjsj
jES

The combiner then computes,

91 S 9\S
2/\(”1 2/\0%
i RN

2 s
- x4A E]eS(SJAo,J)

5
$4A d.

To check this signature we note that w® = 242" where ged(e, 4A%) = 1. As
e is coprime to 4A® we can find a,b such that a(4A°) + be = 1 so that we
finally have the signature

4 Undetachable Threshold Signatures

We now introduce the notion of an undetachable threshold signature. Sup-
pose a user has a private signature key s and a public verification key ».
Suppose also that the user has a ‘constraint string” R, which will define
what types of signature can be created. Then an undetachable threshold
signature scheme will enable the user to provide n entities with ‘shares’ of
the private signature key (where the shares will be a function of R), where
the following properties must be satisfied:

e each entity can use their share to sign a message M of their choice to
obtain a ‘signature share’;

o the ‘correctness’ of a signature share can be verified independently of
any other signature shares;

e any entity, when equipped with £k different signature shares for the
same message M, can construct a signature on the message M which
will be verifiable by any party with a trusted copy of the public key of
the user, and which will also enable the string R to be verified;

¢ knowledge of less than k different signature shares for the same mes-

sage M cannot be used to construct a valid signature on the message
M;

¢ knowledge of any number of different signature shares for messages
other than M will not enable the construction of a valid signature on
message M ;

¢ knowledge of any number of different signature shares for constraints
strings other than R will not enable the construction of a valid signa-
ture with associated constraint string R.

As discussed above, the motivation for introducing this concept is that the
use of a threshold signature scheme or a detachable signature scheme on
its own would not protect against all possible attacks in a mobile agent
scenario. We now describe an example of such a scheme. For brevity, we
only give the necessary changes to the threshold scheme in section 3 to form
the undetachable threshold signature scheme.

Recall that the secret share for shareholder 7 consists of a number s;. Let
h be an appropriate hash function. The signature share of this shareholder
for a message m is then

2, = p2Bsi,
where [is the total number of shares, A = [! and = h(m) is a hash of the
message.

As in Section 2 let I be the identifier of a user and let R be the user re-
quirements. Let H = h(I,R) be a hash of the requirements. We replace
the share s; with a pair (H,t; = H*%). To sign a bid B the shareholder
calculates C' = h(B) and

tC — (H‘2~A~si)0 — H‘2~A~siC — (HC)‘2~A~5i.

Thus, when all the shares are combined the combiner will have a signed copy
of HY, thus achieving a signed undetachable signature.

We observe that a proof of security is given for the scheme in Section 3
provided that k is one greater than the number of corrupt servers (in the
case where k exceeds the number of corrupt servers by a greater number a
slightly adapted scheme is used). With this information to hand we note
that this scheme is secure as long as the undetachable scheme given in [3] is
secure, and that this scheme appears to be sound.

Acknowledgements

The work reported in this paper has formed part of the Software Based Sys-
tems area of the Core 2 Research Programme of the Virtual Centre of Excel-

lence in Mobile & Personal Communications, Mobile VCE, www.mobilevce. co.uk,
whose funding support, including that of the EPSRC, is gratefully acknowl-
edged. More detailed technical reports on this research are available to
Industrial Members of Mobile VCE.

References

[1] Tvan Damgard and Maciej Koprowski. Practical threshold RSA signa-
tures without a trusted dealer. In Proceedings of FuroCrypt 2001, to
appear.

[2] Y. Desmedt. Society and group oriented cryptography. In C. Pomerance,
editor, Advances in Cryptology — Crypto °87 proceedings, number 293 in
LNCS, pages 120-127. Springer-Verlag, 1988.

[3] Panayiotis Kotzanikolaou, Mike Burmester, and Vassilios Chrissikopou-
los. Secure transactions with mobile agents in hostile environments. In
E. Dawson, A. Clark, and C. Boyd, editors, Information Security and
Privacy, Proceedings of the 5th Australasian Conference ACISP 2000,
number 1841 in LNCS, pages 289-297. Springer-Verlag, 2000.

[4] Susan K. Langford. Threshold DSS signatures without a trusted party.
In D. Coppersmith, editor, Advances in Cryptology — Crypto 95 pro-
ceedings, number 963 in LNCS, pages 397-409. Springer-Verlag, 1995.

[5] Tomas Sander and Christian Tschudin. Protecting mobile agents against
malicious hosts. In Giovanni Vigna, editor, Mobile Agents and Se-
curity, number 1419 in LNCS. Springer-Verlag, 1998. Available from
http://www.icsi.berkley.edu/ sander/publications/MA-protect.ps.

[6] A.Shamir. How to share a secret. Communications of the ACM, 22:612—
613, 1979.

[7] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor,
Proceedings of FuroCrypt 2000, number 1807 in LNCS, pages 207 —220.
Springer-Verlag, 2000.

